Problem Set 2_240801618.pdf

# Problem Set 2_240801618.pdf - Problem Set 2 Due on before...

• Homework Help
• 1

This preview shows page 1. Sign up to view the full content.

Problem Set 2 Due on 03/21/2016, before the lecture begins. 1 Please show your work. You do not need to copy the questions. 1. Given an random sample { ( x i , y i ) } N i =1 and a simple linear regression model y = β 0 + β 1 x + u, we calculate the OLS estimators, denoted by ˆ β 0 and ˆ β 1 . Now suppose ˜ x = ax and ˜ y = by , and consider the following regression mode ˜ y = ˜ β 0 + ˜ β 1 ˜ x + ε. Let ˆ ˜ β 0 and ˆ ˜ β 1 be the OLS estimators of ˜ β 0 and ˜ β 1 calculated from the sample { ( ˜ x i , ˜ y i ) } N i =1 where ˜ x i = ax i and ˜ y i = by i . Find ˆ ˜ β 0 and ˆ ˜ β 1 as functions of ˆ β 0 and ˆ β 1 . 2. Wooldridge (4th Ed) Ex 2.2. The following table contains the ACT scores and the GPA (grade point average) for eight college students. Grade point average is based on ... 3. Wooldridge (4th Ed) Ex 2.5. Consider the saving function
This is the end of the preview. Sign up to access the rest of the document.
• Spring '16
• Hong Shengjie

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern