# Math131-Practice Test Final ( 05-07-2014)-Solution Key_796404

• Test Prep
• 17
• 100% (1) 1 out of 1 people found this document helpful

This preview shows page 1 - 5 out of 17 pages.

##### We have textbook solutions for you!
The document you are viewing contains questions related to this textbook. The document you are viewing contains questions related to this textbook.
Chapter 5 / Exercise 1
Trigonometry
McKeague/Turner Expert Verified
1 Department of MathematicsMath 131 (Calculus I) North Carolina A&T State University Practice Test (Final) Name: ______Solution Key_______Class:___________________ Date:___________________ Score:______________ Group Name:______________ Group Member1:__________________________________________ Group Member2:__________________________________________ Multiple Choice 1.Assume that 2lim( )5xf x, 2lim( )2xg x , and 21lim ( )3xh x. Then 2( )lim( )( )xf xg xh x A. −15/7B. −5/3C. −5/4D. −5/6 2.The value of 42041limxxexxis 3.For what value of 𝑎is the function 𝑓(𝑥) = {𝑥2− 1 , 𝑥 < 32𝑎𝑥, 𝑥 ≥ 3continuous? 4.Find an equation for the tangent to the curve 2( )21f xxat the given point ( 2, 7). A. 89yx B. 87yx C. 49yx D. 49yx 
##### We have textbook solutions for you!
The document you are viewing contains questions related to this textbook. The document you are viewing contains questions related to this textbook.
Chapter 5 / Exercise 1
Trigonometry
McKeague/Turner Expert Verified
2 5.The equation of the tangent line to the graph 324yxxat the point (-1, 3) is 6.Find all values of xfor which 3232yxxhas horizontal tangents. 7.If 2( )xf xx e, then '( )fxis 8.If( )sin(13 )f xx, then '( )fxis A. '( )cos( 3)fxB. '( )cos(13 )fxxC. '( )3cos(13 )fxxD. '( )3cos(13 )fxx 
3 9.If 3sin3ln(3 )xyxex, then dydxis xdyxedxxxdyxedxx 10.Use implicit derivative to find dydxof 2233xy dyxdxydydxydydxy 23dydxy 11.Use implicit derivative to find 22)(dx ydxis 12.If the area of a circle of radius ris 2Ar, then the rate of change of the area dAdtis A. 2dAdrdtdtB. 22dAdrrdtdtC. 2dAdrrdtdtD. 2dAdrrdtdt
4 13.The critical points of the function 3213( )2f xxx, are
• • • 