Math 20E Practice Midterm Solutions

Math 20E Practice Midterm Solutions - Practice Midterm...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Practice Midterm Examination Instructor J. Verstraete Time: 40 minutes No notes allowed All questions carry equal weight Question 1. (a) (b) Show that :5y 3 + yg). Use part and the 5-6 definition of limits to show my fa]. $2+y2 liiri mwsmm Ki]; 0 I L; A 5’ . 44% :v Cle U 0 oiivx‘il .l'UIOll (I Cl M? < a. <——-~ 3.13.? ' {ll-~11 l {24’ ea Gr" allUMWW-l < U pul— fl“: 26 Question 2. Define What it means for a function f : R“ —> R to be differentiable at a. point. a. Then prove that the function f (:c, y) = |:13y|1/2 is not differentiable at (:13, y) : (0, U). Awaken 619m 3‘ ‘. at) C x 1 ("I-'1’ 0V" ('1 “3" - r: w , 12m arm w Jim. - E. 2am ax : «cm g 1 a cf f 5% ,c\‘\ To 502. “V1” W7! ’2 '5 wt Adffiflflheéfe of (0,0); E rd o0 W I r i - ' ' _ 3 P. . '. 1 j m a r {o m 34m 5.31:; ~ 0 ‘ f ' {mo n _ 51 50; M T M flQH U3? “'3 6 EV) M . WM ()0 R f n lfiJ‘fA—haflx (AL (0,01 “RM 2AM , if '11” (.5 (w r: 3:: \‘I X "i ‘1 gaff ,C ul‘wmx m“: 901/ VH7. ‘ '1, a r Q, (m x U r 1 V’M ? {I’M Fry? ‘Z t : ' X430 \Ex‘lfmlkr XF—3L \‘jgfimz Question 3. Let f : R2 -> R be defined by f(u,v) = 1m and let 9 : R2 —> R2 be define by g(:L','y) = (y, 22:). If (Mm, y) : f(g($, 30), use the Chain rule to find g—j. WW; WWW _ fl WWW a ww lea am- ‘ «\7 L") Y 1"“ \ W i] Um .6 L sh ht] Ki?” 13.3. + as; , i r 3mg. I Q l ()1- X ‘3‘ ) I; O i E: VQP‘W‘ 5W” :2 01¢ a \ u ’ \ 3 PM: 232% Practice Midterm Examination Instructor J. Verstraete Time: 40 minutes N 0 notes allowed All questions carry equal weight Question 1. State preciser the 6—6 definition of lirnrna flm) : L for a function f : R" —> R. Then prove using the 6—6 definition of limits that lim sin 3:2 +12 2 0. (WWW) ( J ) If . . :{J AJM I {V\ I: L— J’a Dix ‘ I; ll la ( b l3 0 r ’ it 6370 Elm-‘1 13 a _> o sud, ‘ M, LU? cl(?<'£a\(_(§m 53"” {m l \(2 ( ‘11“ ‘ L j, HAUL 04 dig: LW - u “Whit/Hm ‘3’“ aid C?!) 1». E56 55% a __ 2 "M . t gmvié K : {Evil} <L 6%“ ‘j\ 1° §<C S‘Lvi ism“ l Ll lw gaze , r“ “"7 r“ <’< xh L 5 x“: \ ‘1 Question 2. Find the direction of steepest increase of the function f (m, y) : (:1: +y)e$y from the origin. What is the equation of the tangent hyperplane to the surface 3 = f (:13, y) at the origin? fig“? Maw 'H-Ym‘ 6k" {0,0,} I 22+ 25M :79 W m f2)><)”2,7 -=’ ' x l 2&1 + .4" LI :6 ii We DbL-v‘fiex‘j) . iii \fl‘fi ) v (3‘ U 2 ‘4 I “he CLfi‘flC/\WQ’\ CPL ;r\ @6091:- r'iitxb (ASDUA ME EMT—nix FWKVqu : -7 were,“ I; : Question 3. State precisely the Chain rule for determining the gradient of V( f o g)(a) where a E Rm and f : R” —_> R” and g : Rm 4 R” are functions. Then determine WU" o 9M1) fiwhen f : R2 a R3 is defined by flay) = (:1;,y,:.3y) and when 9 : R —> R2 is defined by 9(z)=(z,1/Z)» Question 4. Find all second order partial derivatives for the function f : R3 —~+ R defined by flair-w) : (1+ 1M1 +y)(1+z)v ' . «‘16.; ‘ {I - .“x- " {Q 7 Mtc‘t it We K‘fiu‘” “ Q “C Question 1. Prove that does not exist. "L MK - Practice Midterm Examination Instructor J. Verstraetc Time: 40 minutes No notes allowed All questions carry equal weight sin :51 lim 2 ( J) (sawmwm) Li: + y? ("Hand M 901’ {7c m=fru 3's. . \. s m xi - 15L Warm x X '3 U Ls; 5:21:53 l ‘t mm S's MN; flit/M1? dam mi“ Exist. Question 2. State the definition of differentiabihty of a. function f : R” —) R. Find the derivatives fmm, 0) and [HULUJ of the function flay) : sci/Bf”. State Without proof whether this function is differentiable at (0, O). Pkg-13' Pad-“£7 e 542*?- ie (J1me hog—“ef- \ ~ s "w tie—0,0: J’x (0 g 0 \ {L’mwwL‘jM-w—w-«mm—J ‘ M g. o i..7co,oy Indo h ii— 4‘ \S cMHuwimflafl a} (0‘0); Thom we Nail—A « [ugh/3 boa 3: “ilk-"3»: 3 C) {’kiW)“}(Ugo‘ \x i“? >L W} O Mix“ '\ e! F j M NEW: ._ m ‘3 GEM/tit.) on m .3, b .whwummwrl EL S1 + I”: K ' Question 3. Let f : R2 —> R2 be a differentiable function where : ('u,(.1:,y),v($,y)). Let @(Iyy) : Determine a formula for 23: in terms of derivatives of f with respect to u and e and derivatives of u and v with respect to a: and y. vséhtsfl (“tweak/3) ‘ thmfl), N ‘ :‘JV fight ’23 Li D 1/4 g: .v M“ ‘ V79t>qv3 ‘7 I "9521 3:511“ 55% '31.} \ if} 73$ 2' 3 m 3v 1 new \vg f {2t l M: K a“: fl EH“ mam W‘w‘ ‘ J :1 31., 3“ 3‘1 F (3% egg 3f”; \ 3" EU / [any Q‘vf "3gb Be 2m an, "Tm 2m 2“. 4 ac; W 3. i ‘—-—m _~ + .___ ,7 W- Hm ‘ - fié‘fl FBU‘ '23? 23V ) 3L4 “3‘1 '3.” \ Question 4. Let f : R3 a R be a function. How many different second order partial derivatives can f have? Now suppose f E 02(R3 How many different second order partial derivatives can f have? Find all second order partial derivatives of the function f : R3 —> IR defined by i 35 Z fez-m = — + a + —~ 3; z m ; la}: ‘3: ‘ - ‘ r l/x C “C. If“ “ ‘n' t a" ’ in 3 l: a” W WWW give Q ‘1'" (“‘17: git-1 f ‘1‘] frat “on \ fl g ’2 g — M“ 1 l ‘1 "NM yt‘i ‘1‘ l h ' :f m V 5r“ X3 7 \ “ d—k‘ . ‘1 .1 2x , r: F” in: I i: “ f‘m 7.3 3W £1 21 ...
View Full Document

This note was uploaded on 12/25/2008 for the course MATH 20E taught by Professor Enright during the Spring '07 term at UCSD.

Page1 / 11

Math 20E Practice Midterm Solutions - Practice Midterm...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online