This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Practice Midterm Examination Instructor J. Verstraete
Time: 40 minutes No notes allowed All questions carry equal weight Question 1. (a)
(b) Show that :5y 3 + yg).
Use part and the 56 deﬁnition of limits to show my fa].
$2+y2 liiri
mwsmm Ki];
0
I L; A
5’
. 44% :v Cle U 0
oiivx‘il .l'UIOll (I Cl M? < a. <——~ 3.13.?
' {ll~11 l {24’
ea Gr" allUMWWl < U pul— fl“: 26 Question 2. Deﬁne What it means for a function f : R“ —> R to be differentiable at a. point. a. Then
prove that the function f (:c, y) = :13y1/2 is not differentiable at (:13, y) : (0, U). Awaken 619m 3‘ ‘. at) C x 1 ("I'1’ 0V" ('1
“3"  r: w ,
12m arm w Jim.  E. 2am ax : «cm
g 1 a cf f 5% ,c\‘\
To 502. “V1” W7! ’2 '5 wt Adfﬁﬂﬂheéfe of (0,0);
E rd o0 W I r
i  ' ' _ 3 P. . '. 1 j m a
r {o m 34m 5.31:; ~ 0
‘ f ' {mo n _
51 50; M T M ﬂQH U3? “'3 6
EV) M . WM
()0 R f n lﬁJ‘fA—haﬂx (AL (0,01 “RM
2AM , if '11” (.5
(w r: 3::
\‘I X "i ‘1
gaff ,C ul‘wmx m“: 901/
VH7. ‘ '1, a r
Q, (m x U r 1 V’M ?
{I’M Fry? ‘Z t : ' X430 \Ex‘lfmlkr XF—3L \‘jgﬁmz Question 3. Let f : R2 > R be deﬁned by f(u,v) = 1m and let 9 : R2 —> R2 be deﬁne by g(:L','y) =
(y, 22:). If (Mm, y) : f(g($, 30), use the Chain rule to ﬁnd g—j. WW; WWW _ ﬂ WWW a ww lea am ‘ «\7 L") Y 1"“ \ W i] Um .6 L sh ht]
Ki?” 13.3.
+ as;
, i r 3mg. I Q l ()1 X ‘3‘ ) I; O i E:
VQP‘W‘ 5W” :2 01¢
a \ u ’
\
3 PM:
232% Practice Midterm Examination
Instructor J. Verstraete
Time: 40 minutes
N 0 notes allowed All questions carry equal weight Question 1.
State preciser the 6—6 definition of lirnrna ﬂm) : L for a function f : R" —> R. Then prove using the 6—6 deﬁnition of limits that lim sin 3:2 +12 2 0.
(WWW) ( J ) If . . :{J AJM I {V\ I: L— J’a Dix ‘ I; ll la ( b l3 0 r ’ it 6370 Elm‘1 13 a _> o sud, ‘ M,
LU? cl(?<'£a\(_(§m 53"” {m l \(2 ( ‘11“ ‘ L j, HAUL 04 dig: LW  u
“Whit/Hm ‘3’“ aid C?!) 1». E56 55% a __ 2 "M . t gmvié K
: {Evil} <L 6%“ ‘j\ 1° §<C S‘Lvi
ism“ l Ll lw gaze
, r“ “"7 r“
<’< xh L 5 x“:
\ ‘1 Question 2. Find the direction of steepest increase of the function f (m, y) : (:1: +y)e$y from the origin.
What is the equation of the tangent hyperplane to the surface 3 = f (:13, y) at the origin? ﬁg“? Maw 'HYm‘ 6k" {0,0,} I 22+ 25M
:79 W m f2)><)”2,7 =’ ' x
l 2&1 + .4" LI
:6 ii We DbLv‘ﬁex‘j) . iii \ﬂ‘ﬁ ) v (3‘ U 2 ‘4 I “he CLﬁ‘ﬂC/\WQ’\ CPL ;r\ @6091: r'iitxb (ASDUA ME EMT—nix FWKVqu :
7 were,“ I; : Question 3. State precisely the Chain rule for determining the gradient of V( f o g)(a) where a E Rm
and f : R” —_> R” and g : Rm 4 R” are functions. Then determine WU" o 9M1) ﬁwhen
f : R2 a R3 is deﬁned by ﬂay) = (:1;,y,:.3y) and when 9 : R —> R2 is deﬁned by 9(z)=(z,1/Z)» Question 4. Find all second order partial derivatives for the function f : R3 —~+ R deﬁned by ﬂairw) : (1+ 1M1 +y)(1+z)v ' . «‘16.; ‘ {I  .“x " {Q 7 Mtc‘t
it We K‘ﬁu‘” “ Q “C Question 1. Prove that does not exist. "L MK  Practice Midterm Examination
Instructor J. Verstraetc
Time: 40 minutes
No notes allowed All questions carry equal weight sin :51
lim 2 ( J)
(sawmwm) Li: + y? ("Hand M 901’ {7c m=fru 3's. . \.
s m xi  15L
Warm x X '3 U Ls; 5:21:53
l ‘t mm S's MN; ﬂit/M1? dam mi“ Exist. Question 2. State the deﬁnition of differentiabihty of a. function f : R” —) R. Find the derivatives
fmm, 0) and [HULUJ of the function ﬂay) : sci/Bf”. State Without proof whether this
function is differentiable at (0, O). Pkg13' Pad“£7 e 542*? ie (J1me hog—“ef \ ~ s "w tie—0,0:
J’x (0 g 0 \ {L’mwwL‘jMw—w«mm—J ‘ M g. o i..7co,oy Indo h
ii— 4‘ \S cMHuwimﬂaﬂ a} (0‘0); Thom
we Nail—A
« [ugh/3
boa 3: “ilk"3»: 3 C)
{’kiW)“}(Ugo‘ \x i“? >L W} O Mix“
'\ e!
F j M NEW: ._ m ‘3 GEM/tit.) on m
.3, b .whwummwrl
EL S1 + I”: K ' Question 3. Let f : R2 —> R2 be a differentiable function where : ('u,(.1:,y),v($,y)). Let
@(Iyy) : Determine a formula for 23: in terms of derivatives of f with respect
to u and e and derivatives of u and v with respect to a: and y. vséhtsﬂ (“tweak/3) ‘ thmﬂ), N ‘ :‘JV ﬁght ’23 Li
D 1/4 g: .v M“ ‘ V79t>qv3 ‘7 I "9521 3:511“
55% '31.}
\ if} 73$ 2'
3 m 3v 1
new
\vg f {2t l M: K a“: fl EH“ mam
W‘w‘ ‘ J :1 31., 3“ 3‘1
F (3%
egg 3f”; \ 3" EU / [any Q‘vf
"3gb Be 2m an, "Tm 2m 2“. 4 ac;
W 3. i ‘——m _~ + .___ ,7 W Hm ‘ 
ﬁé‘ﬂ FBU‘ '23? 23V ) 3L4 “3‘1 '3.” \ Question 4. Let f : R3 a R be a function. How many different second order partial derivatives can f
have? Now suppose f E 02(R3 How many different second order partial derivatives can
f have? Find all second order partial derivatives of the function f : R3 —> IR deﬁned by i 35 Z
fezm = — + a + —~
3; z m ; la}: ‘3: ‘
 ‘ r l/x C “C. If“ “ ‘n' t a" ’
in 3 l: a” W WWW give Q ‘1'"
(“‘17: git1
f ‘1‘] frat “on \
ﬂ g ’2 g — M“
1 l ‘1 "NM yt‘i ‘1‘ l
h ' :f m V 5r“ X3 7
\ “ d—k‘
. ‘1 .1 2x , r: F”
in: I i: “ f‘m 7.3 3W £1 21 ...
View
Full Document
 Spring '07
 Enright
 Math, Derivative, Practice Midterm Examination

Click to edit the document details