This preview shows pages 1–4. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Mcbiles, Emily – Homework 5 – Due: Oct 3 2006, 3:00 am – Inst: David Fonken 1 This printout should have 20 questions. Multiplechoice questions may continue on the next column or page – find all choices before answering. The due time is Central time. 001 (part 1 of 1) 10 points Evaluate the integral I = Z 1 x 5 4 x 2 dx. 1. I = ln 5 2. I = 1 8 ln 5 correct 3. I = 1 8 ln 5 4 4. I = ln 9 5 5. I = 1 4 ln 9 5 6. I = 1 4 ln 5 4 Explanation: Set u = 5 4 x 2 ; then du = 8 dx while x = 0 = ⇒ u = 5 x = 1 = ⇒ u = 1 . In this case, I = 1 8 Z 1 5 1 u du = 1 8 Z 5 1 1 u du = 1 8 h ln  u  i 5 1 . Consequently, I = 1 8 (ln 5 ln 1) = 1 8 ln 5 . keywords: definite integral, log integral, poly nomial substitution 002 (part 1 of 1) 10 points Determine the indefinite integral I = Z 2 x ( x 3) 2 dx. 1. I = 6 ( x 3) 2 + C 2. I = 2 x 3 + C 3. I = ln( x 3) 2 6 x 3 + C correct 4. I = 3 ln( x 3) 2 + C 5. I = ln( x 3) 2 + 6 ( x 3) 2 + C Explanation: Set u = x 3 ; then du = dx , so I = 2 Z x ( x 3) 2 dx = 2 Z ( u + 3) u 2 du = 2 Z du u + 6 Z u 2 du. But 2 Z du u = 2 ln  u  + C = ln u 2 + C, while 6 Z u 2 du = 6 u 1 + C. Consequently, I = ln( x 3) 2 6 x 3 + C . keywords: 003 (part 1 of 1) 10 points Mcbiles, Emily – Homework 5 – Due: Oct 3 2006, 3:00 am – Inst: David Fonken 2 Evaluate the definite integral I = Z 4 1 2 √ x ( √ x + 4) dx. 1. I = 4 ln 7 5 2. I = 4( √ 7 √ 5) 3. I = 2( √ 6 √ 5) 4. I = 2 ln 7 5 5. I = 4( √ 6 √ 5) 6. I = 4 ln 6 5 correct 7. I = 2 ln 6 5 8. I = 2( √ 7 √ 5) Explanation: Set u 2 = x . Then 2 udu = dx , while x = 1 = ⇒ u = 1 x = 4 = ⇒ u = 2 . In this case, I = 4 Z 2 1 1 u + 4 du = 4 h ln  u + 4  i 2 1 . Thus I = 4 ‡ ln 6 ln 5 · = 4 ln 6 5 . keywords: 004 (part 1 of 1) 10 points Evaluate the definite integral I = Z 1 4 x 2 + 2 x + 4 4 x 2 + 4 dx. 1. I = 2 + ln 2 4 2. I = 4 + ln 2 2 3. I = 4 + ln 3 4 4. I = 4 + ln 2 4 correct 5. I = 4 + ln 3 2 6. I = 2 + ln 3 4 Explanation: After division 4 x 2 + 2 x + 4 4 x 2 + 4 = 1 + 1 2 ‡ x x 2 + 1 · . Thus I = Z 1 1 dx + 1 2 Z x x 2 + 1 dx = h 1 x i 1 + 1 2 Z x x 2 + 1 dx. To evaluate the last integral we use substitu tion. Set u = x 2 + 1. Then du dx = 2 x, so I = 1 + 1 4 Z 2 1 1 u du = 1 + h 1 4 ln u i 2 1 . Conequently, I = 4 + ln 2 4 . keywords: 005 (part 1 of 1) 10 points Evaluate the definite integral I = Z 3 π/ 4 π/ 4 4 cos x sin x 4 sin x + cos x dx. Mcbiles, Emily – Homework 5 – Due: Oct 3 2006, 3:00 am – Inst: David Fonken 3 1. I = ln µ 7 3 ¶ 2. I = ln µ 5 3 ¶ correct 3. none of these 4. I = ln µ 7 3 ¶ 5. I = ln µ 5 3 ¶ Explanation: Since the integrand is of the form f ( x ) f ( x ) , f ( x ) = 4 sin x + cos x this suggests the substitution u = 4 sin x + cos x . For then du = (4 cos x sin...
View
Full
Document
This note was uploaded on 03/19/2008 for the course M 408L taught by Professor Radin during the Fall '08 term at University of Texas at Austin.
 Fall '08
 RAdin

Click to edit the document details