Lischuk (2016) Geometallurgical Programs.pdf

Lischuk (2016) Geometallurgical Programs.pdf - L ICE N T...

Info icon This preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
LICENTIATE TH ES I S Geometallurgical Programs – Critical Evaluation of Applied Methods and Techniques Viktor Lishchuk Mineral Processing
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Geometallurgical programs – critical evaluation of applied methods and techniques Viktor Lishchuk Division of Minerals and Metallurgical Engineering (MiMeR) Department of Civil, Environmental and Natural Resources Engineering Luleå University of Technology SE-971 87 Luleå Sweden Supervisors: Pertti Lamberg and Cecilia Lund Luleå University of Technology PREP
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Printed by Luleå University of Technology, Graphic Production 2016 ISSN 1402-1757 ISBN 978-91-7583-636-2 (print) ISBN 978-91-7583-637-9 (pdf) Luleå 2016 www.ltu.se
Image of page 4
i ABSTRACT Geometallurgy is a team-based multidisciplinary approach aimed at integrating geological, mineralogical and metallurgical information and yielding a spatial quantitative predictive model for production management. Production management includes forecast, control and optimization of the product quality (concentrates and tailings) and metallurgical performance (e.g. recoveries and throughput); and minimization of the environmental impact. Favourable characteristics of an ore body calling for geometallurgical model are high variability, low mineral grades, complex mineralogy and several alternative processing routes or beneficiation methods. Industrial application of geometallurgy is called a geometallurgical program. This study undertook a critical review and evaluation of methods and techniques used in geometallurgical programs. This evaluation aimed at defining how geometallurgical program should be carried out for different kinds of ore bodies. Methods applied here were an industry survey (questionnaire) along with development and use of a synthetic ore body build-up of geometallurgical modules. Survey on geometallurgical programs included fifty two case studies from both industry professionals and comprehensive literature studies. Focus in the survey was on answering why and how geometallurgical programs are built. This resulted in a two-dimensional classification system where geometallurgical program depth of application was presented in six levels. Geometallurgical methods and techniques were summarised accordingly under three approaches: traditional, proxy and mineralogical. Through the classification it was established that due to similar geometallurgical reasoning and methodologies the deposit and process data could be organized in a common way. Thus, a uniform data structure (Papers I, II) was proposed. Traditionally the scientific development in geometallurgy takes place through case studies. This is slow and results are often confidential. Therefore, an alternative way is needed; here a synthetic testing framework for geometallurgy was established and used as such alternative. The synthetic testing framework for geometallurgy consists of synthetic ore body and a mineral processing circuit. The generated digital ore body of a kind is sampled through a synthetic sampling module, followed by
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern