6.4 Completed Notes.pdf - Sec 6.4 integration with TabIes I...

Info icon This preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Sec 6.4 integration with TabIes I A. Tables TABLE OF INTEGRALS BASIC FORMS IW’ WW 0 nil v 2' n “+ 1 . n _ IE. I Ianudu = In Iscc "I + C u . II (In _ I I I3. I court!" = In |sinn| + C , ff ' 4 - I I4. I scour!" = In [sccu + 1mm} -I- C 1 = a . IS. lcscudu = In Icscu , cotuI + C , Ina . . rlu | 1—, 16. l—— = sin —-I- C l‘ _ . Ja’ H u’ (I I a2 _ I KW 'I‘ N I a I (It: I u . 13.:l—wu—H =Hscc"— + C 2 = 4. NW 0 (I - ' (In I u -I- a . art—m 19. | = —In + c 9 J 5c um 90 u _ a1 —- u’ 20 u -— a ' . ‘ In I u - (I I = - 20. | ‘ = —ln + c . , u2 - (1’ 2a r-I- u FORMS mvowmc J01 + "i. a > n ,.__.___ u 1 21. I fill +u1riu=g~da1 + u? + Ez—lnfit + «W + u’) + C ' u ‘22. I “2 \lal -I- "2th: = Em? + 2:12) ‘10 1+ u’ — -—ln(u + \m! -|-u1)+ C O (:1 + u’ ‘ V‘a’ + u’ 23. Impr—du : 3/01 -|- u’ - a In ' «0’ -I- 1:3 Ja’ + u2 24. l -—2—du = ——-—~ -I- lnIu -|- ‘1‘“! + ”2) + C . u u ‘ (In 25. l —— = In(rr + \la’ + “1) -I- C I \faz -l- u’ ‘ u’du I_l 26. -—-— \ a’ --I H1 — —-Ill(u + Jul + u 2)"? . «1’ + “2 =2 2 the I a? -I- u" -I- (r 27. J——— = -—In I- c rula’ -I 1.:2 a H 28 l du __ \laz +111 + C I. u’v‘rr’ + "1 azu ' (In H 29. m — -I- C W: , .I (a + II‘I’” aka! +1.2 Desiré Taylor Math 1242 FORMS INVOWIRG \ (I’— 30. I \III- -— II- ’IIII m H :‘Iaz - II? + -— sin TABLE OF INTEGRALS II". «>0 ,._...__. I" — + C (l ‘ 4 . ,——— Ir a . __ II 3]. I N'Vrl': - “at!" = §'(2i'l'1 — (I'M/(I2 - II2 + ‘E—Slll ‘-~ + C (I | ' III2 — II’ (I + (I3 — N’- 32. I '\———‘—“(III' = \IIIJ — II1 - IIln + C . II II ‘ III’ - II-’ 1 II 33. I -\—-u:-—II'II = "—‘\I(I2 - II2 — sin' H+ C .. II' II (I ‘ ":6“! II (11 u 34. I I =-—\III3—II1-I—-sin'- +C . \I'II’ m II2 2 2 (I ‘ (III I II + III’ - II2 35.I ‘ 1=~h~In—~fi+;—*— +6 . II \-'II- -- I'I' fl ' IIII ] 1 . 36. I I, , =-z—'\III‘—II--I-(, . II \' II 7 II’ (I II ‘ : 1-5;: g H 2 2 2 2 3n 1 II 37. IIII “HI IIII—-—(2II —5(I) (I “H +——sin — -|-C ‘ 8 8 II (III II 38. I fl = m + C [111)“ flz\/fl1—Ilz FORMS INVOLVING rI' (I > O . , I_I 39. I \ II3 — (I'I’III= 2 —'\II(2 - (I2 — ——lII III + III2 -" (I I -I- C . ' I I ‘ , II 40. I l'f'ffl" - II-IIII = EIQHI -— 02% III2 — (12'— ——lI1IIII \I! I3 —II1I+ C . ,’_‘—‘"1 J. v - - I - _ rI , 4?. I IIII = \IIIz - (I2 -- II cos '— + C . II |II| ' 5' 1h. 3 2 _ 1 I, II II \II'I' (I 4‘2. I , IIII = ——--—— + In III -I- \III2 — (I‘I + C . II' II " IIII 2 2 43. I 1%: E III III + \IH _. (l' I 'l' C . \-'II"— II- ' II’IIII II 44. I I‘_M‘=-— [Hz—(12+—'II‘IItI+\Il'I'3‘—‘(I‘ I+C . V‘H' - (I' (III \III7 — (I2 ‘ 45. I: -—— T = ‘—-—2— + C, . II \ "-'II w (r (I II IIII II 4" ”’ ‘ fi—TMTW? 4“ C . (H * H I a 1/” - (I Desiré Taylor ____—-—-—I Math 1242 TABLE OF INTEGRALS FORMS INVOLVING u + bu ‘ u (lu I . : —~— + — + 47 'l u + bu b’ (u bu a In |u bu I) + C 48 l‘ H’dfl _[t +13): __ 4( +1] + 2 21+] ]+ C . . u + bu -2;’_ u u u u m) u n In M] ‘ du l u 49. m z u I + ‘ j u(u + bu) u n u + bu C ‘ du ! b u "I. bu . r,—— = ,2 + — 50 ‘ u'(u + bu) (m uz n u 5| ‘ uu'u _ u +[_l2| +1) I I-C ' _ (u + bu]2 b’(u i bu) n I“ H ‘ du I l u + bu 52' J u(u + bu)I _ u(u + bu) u F I“ u t + C 53 | "2!!” l a I bu “2 2 |1| +lr{ i C . '——"_'—,‘ ‘j‘ —‘ ' ' '_ "' 3 I' ‘ ' . {u -I~ bu)‘ b" u + bu a I u I 2 ‘ 54. l u\/u + bu (b — lib: + C I u du 5. —— I — 2 ‘l + b -i- 5 ‘ \ ,.__.afl + bu 1’ b2 ()u u) u u C . 2 i 56. —/"_:_mfi = 1511‘ (Ba I- 3!) u — 4ubu)\/u + bu + C . u -' 57 l‘ du =~Ln Wail) "J5: +C ifu>0 - . u «a + bu J" la -1 bu + ' 2 u + bu ‘ = Ian"I + C, if < 0 «CH -u a ‘ J +1 ‘ I 58. ‘Mdu = 2 u + bu -I- (r l ML . H . u (a + bu 59 “—— -J__a" + bu Iu \lu + bu b"_fi___| du . r = f u 2 um . 2 . 60. l u‘K/a 4- bu (be 3 m [u"(u + bu)”: - uu l u""' x a + bu du] 61 u "du _2u"\/u --I bu __ , 2m: ‘ u""‘du . . ‘11: + bu 119'"? I) M?“ + i). «u -|- bu “ (b: \m + bu b(2u — 3) ‘ (b: . u 62. W "Jr: 4- bu “(Pi — UM'H 2N0? # 1) . u""\/u + bu Desiré Taylor Math 1242 TABLE OF INTEGRALS TRIGONOMETHIC FORMS 63. I‘sinzu (I: = Eu — {-sin 2!! + C | 64. I 6052:: (hr = In -l~ isin 2H + C a 65. I Ian'utlu = [an N - u + C 66. I col’mhr = —co! u — u + C 67. I sin’rrdu = ~§(2 + sill’u) cos n + C 68. I cos’udrr = H2 + cos’n‘) sin n + C 69. I tan’udu = itnn’u -|- In Icos n| -f- C . 70. I col’udn = —§ collar ~- In Isin "I + C . ' I I II. I scc’ndu = j sec H mm: + 311: |scc r: -I‘ [an u| + C I I 7?. I csc’rrdn = "3 csc 1: cm H + ‘2!" Icsc u H cm “I + C ‘.,, l.,,__. u-l‘.,,_.. 73. I sm u m: = ——5m n cos u -I- sm 'mm . u n . . _ . d .n w. i n-'] ‘ H l n"! 7 . cos. (”In H cos :1 sum + cos “(In . n u . l 75. | WIN" # I Iml”'2udn u — . . I 1311"" (In = INVERSE TRIGONOMETRIC FORMS 87. I sin"urfrr = rrsin"u + JP '- "1 + C 1 33. I cos"'udu = ucos"'rr H \H - u’ 'l' C o v I mn"'u (In = ulan"u — ; |u(] + "1) + C M2 — l I In.” - u’ 4 sin" a -I- T- + C 89. 90 I u sin"u d" = ‘ __ 2M2 — 1 _ 91- I "cos 'rrdu =——cus ' fl" Desiré Taylor 76. 77. 78. 79. 80. BI. 82. 83. 84. 85. 86. 92. 93. 94. 95. . *1 . I c0l”udu = cnt""u - I col""’udu _ n — I . ‘ l n — 2 ' F I scc"m!u = Ian rrscc""u + see" ’udu _ n — I u - l . ' —l n — 2 ‘ I csc"u(lu a col ucsc""’u + I csc""udu _ n - l u — l _ ' . . sin(n - b)u sink: + b)” . I smmr sm bu (In H m.— - — + C . 2(0 _ b) 20? + b) ‘ . . sm(n H 1))" sm((: + b)u I (:05 (m cos bud" = —~—-—-— —r- + C . 2(rr - b) 2({1 + b) ‘ . Cosh: - b)" cask! + b)" I sm (m cos bud" = —----—-— - —-—-— + C . 2(0 ~ b) 2(a + b] I "sin "(In = sin n - n cos n + C . . I ucosu (In = cos“ + H sill u + C I u"sin mm = -u"cos u + u I M" cos n du . . I n" cos n «In = u"sin l'l' — n I u""' sinudu . . ‘ sin“"'u cos'“'u n H l ‘ I sin"u cosmrr (m = u I sin""u cos'firdu . n + m n 1— m , sin"”u cos""u m - l ‘ . , = —— -I- I sm"u (205“ 2nd” n + m n + m . ‘ u2 + I 2 hurt" "1 ~52!- ‘I- C I u {allr'u (In = 1 [NH sin"'u - I u’”. d“ W] M $5 —1 ' I I u" sin“! (In o n+l ‘ l ' u"” (In . It” 60541”!!! = — u”" c054“ + I — n ¢ —I ,I n -I- | . W ‘ ' _ l ' M” (In I u"lan 'mhr = -—-- ir"” lmf'n H I I . n 9E -I . u -f- l _ . I 'I' n Math 1242 TABLE OF INTEGRALS ___________________—..._._.___...__—.__——-_-—-———— EXPONENTIAI. AND EOGARITHMIC FORMS I l I 96. I Item'du = F01" -‘ l)e"" + C 100. I in min = r: In H ~ u + C Q ’ I H n “n+l 97. I “Regudu = _"ncau H .... ”n clued" 10]. I 1: mm!” m ——);[(n l- I) In H — 1] -l~c . a a , (31+ 98. I 0"" sin Land“ = 029+ ()2 (a sin bu ~ I) cos 1th) + C 101' H In H ‘1'”:l" II“ ”I + C V ell" I 99. I 9"" cos but!“ = 0’ + b2 ((1 cos bu + bsm bu) + C HYPERBGHC FORMS 103. inh n (In = cosh u -I- C IOB. I csch u (1:: = In |tanl1§u| + C 104. ech’n (in = tanh u + C 105. I tanh min = In cosh n -|- IIO. I csclg’udu = Heath u -l- C III. I scch H lanh u ch: = -scch u + C 106. I colhudrl = "I + C t a I csch l'l' cmh u the = —csch u + C 107 scch "dz: = tan" Isinh u] + C FORMS ENVOLVING film: h NE, a > 0 (l2 ”3. I «20:: — u (It! 3 u g a 2cm — “1 + "Ems '(a _ H) + C (I 6 2 a ‘ 2Hz — rm — 3a2 a3 (1 ~11 ”4. I raw/2m: — “3:!” = ———— anu — u2 + —cus" + C a — u «20:: - "2 + acos"'( ) + C __ 2 ”5' .’___.I ‘12:”: u du= a I" T 2' H. z .1 ”6. I‘___ 2m: n —-—du = _ 2‘1201: u _ cos"(fl a u) + C l ‘ In a - u m. I—-‘—— = cOs"( )+ c . ‘12tm- "3 a I 18. I u du . J20" '- M2 ' 1 + 3 w n9. |fl"= ”" ‘" 3“)\/27:;——ui+icos- I“ ") +c . ‘/2(m — u’ a “___r___I du J2rm - H2 u a — u = — 2(m - u2 + acos'( ) + C a =——H+c 120. ~./2(m — u? an Desiré Taylor Math 1242 Examples: 1.) [(25—4x2)%dx ,7: ‘4 ,4 a C $1125 UL“: LIX! *7- ,‘2 (f% [Qu¢6w¢)m“ k 3%"Sw 71)"? c 5 “V'- 27‘ r’F—fi—f—T‘T‘} a du." 20160 1T9; (’%(2[4X2)~5(25))\/25”4X +14%) 814,-. {g} ' +C Jiolu: 0W # _.___ :5: 241331115de "z 9‘ 3 9m; Sued/x ‘73 :3(”’._é-$V;\“x cosx+ 5%.. SQVRBX ) W L 4; (p7 9(fi’éL9“; qxcosx +751 (”*%(1 +3inzx)Cosx)) + 5;: t/f—b Desiré Taylor Math 1242 Desiré Taylor Math 1242 'f l ) We bwork I 2. (1 pt) t Book Problem 5 I dx Use the Table of hate ruls in the back of our textbook to evaluate f ——-—— g y x2 v 16X2 -i- 49 ,_ 11. %; AM '— LIL EJaej'L 10 .-;; F70 I "'—-—-_, Fm ”fig; 4‘? (#7:) ‘ 7. (1 pt) Book Ploblem 15 ' .-— ,— H '1‘4be""+c Use the Table of Integrals in the back of yom textbook to evaluate / fight 1'in X Desiré Taylor Math 1242 9. (1 pt) Book Problem 27 . . l7 ._ Evaluate the Integlal fx2+4x+29 (1A — ~_—; 11 gangs—l X2+fo+ 2 9 Desiré Taylor Math 1242 s. (1 pl) ) Book Problem 11 Use the Table of Integrals in the back of your textbook to evaluate fyM—l I + [By—y2 d)" W” (9 ,C-adsm Mw "‘ Cat-flaw) (2) J7,— (€03- t-JE)“: (6&3? ~ (W) C33 m (kl—.3331 __ [Lg‘ywhzsj W .,-_ af‘v'uf" £152. 0M2” -2u.o(M -—-—~ ,Jliwr: ULOUL DesiréTaylor "Ll—S “W [f7- oh” 4, b ( 5:59 MW *E'SZ‘SVLHKfl'g’ 4‘: 77M .. Q. __________ . _, f ‘5 “if (25’£3“bl‘)m+ mean/26454.? +759m"'(.5_£5—9)K...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern