6.5 Completed Notes.pdf

6.5 Completed Notes.pdf - Approximation Consider the...

Info icon This preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: - Approximation Consider the function f(x) = exl. This function cannot be integrated. However, the integral can be estimated by geometric means. 1 '12 Use the midpoint rule with n=4 to estimate I9 d 0 . y f(x)=e 2’ ,g; ,. bi“: .L M’ n Li Li - x '1»; J. 3”] 1 DesiréTaylor ”7-"- EL! (4% 7 Lil 5(061fl 1 A.7 The Trapezoidal Rule Area of a T rapa201d(§—-+:)h i - ' ' ' Examples: -\ L 1.) Estimate IU" by dividing the interval [0,1] into4trapezoids of equal width 0 W:fi_, i1[pco')+1llfi)+zl(*i+ 2W5)* 31w} ‘2. _..._.._ ._... ..._.._- “w...“ __.__ __‘ _ ._..__‘...I*7- Desiré Taylor Math 1242 .9] I' ; 44444444444 +2) 2W; 121 4444mm +f(xn.2)+f(x1)+f(x )1 .;_i . : f; 44—59442 f(x,)+2 114;)4 +2f(xn2)+2f(x )4. (4)] _ B. Simpson’s Rule I - SimpSQn’s-Rule is a combination of the Midpomt rulé'aridIthe Trapezoidal rUie. V]testlmates_]f(x)dx I, ' ' bJ_—_' __-a I Where _c_I__= xi; 15:36H , Ax]: ,and n is EVEN. . . fl ~17, Mk" -—[f(a)+4f(x4)+2f(x2)+4f(x3)+2f(x4)+ +2f(42)+4f(x41 b)] X“ Example: - £06) b-PA. ___ 1:25,]. x2 1.) Use Simpson 5 rule to estimate I dx with n= 6. (i 9 Find 55) [m 44(4)424;4)444(;) 24942424022] " where qFxé; 1) 4:95): ' 'anq; Ax: __ is give'njbyr -' - ' __I;--¥~-=F--Ax[r(xl)+f(x2)+ +f(x42)+f(x )+f(b)] .'1*??34);42(4);24(4);m4»2444);}4122442;426412;;2ib2'i. 'f ‘ ”WWW—”MW“ m—n —'—-{ Desiré Tayloi Math 1242 a") 0. Error Bounds Error bounds allow us to calculate the maximum amount of error between an approximation and the true integral for a set partition (n). 16(1)??? r: Ill-f}. :3 ' Midpbint Rule IE¥|< 24” where I f ( )ISk for a<x<b , w i: :0 w SlmrpsonsRule IE3 I<k (b 005 where .| fl‘U) (x) I<k for a<ic<b , 18011 ,. Example: 2 1.} For the function f(x)= e x ,find 0 £Wflr' b. = 1.467007 98W “’0-01‘80’17ll0l c. FinB‘t flmaximum error using the error bounds and compare to the actual error. f ”JI- Ig I z. Hire? ‘ in— mm lfifix) L01] T' . _. *2 4360' a *1. K 4mm: 2e 1, W e @IETI‘A ooM‘iWSWB d. What is the smallest value of n that will yield an error within 0001? IETI 5- efiafli i 0-00 l . #» (”411545, Y ll h p 0%[y e 02 q Ho soggy (i O)? 43.0 00) " .. a 7 Wl'llnl I: “I: r: l :6 \ CL) 4.0 ool 147" K i%‘5°ll‘-l0‘il7 “'— flw w3®4 Desire Taylor - l [2,ququ 5"“ Aguasucnsza“ A5328" 0330.9a95 “‘7/7I ”FHA. 30%Qi' a. Jexzdx: qullafilV‘lla f fale’ @fi-lm P‘Cxi- '— 2.15311 =0 n aim,» ‘3}, 7 fig [rm—Mimwzcm) i .- , .1 fr; 2.) For the function f(x) = 1n(x), find O 4—2: ln(x)dx ‘" 2 6145,7717IqLF'AX’; a? :— 7 :“ Z 8%.?— ” PM; 14,9 (l. 6)+ 2 4W) «4%? 63+2N5M Ll W5- 5) til“)? ”’1'; COM Maw @1405) +2flmziit'iW/fl'5) +24’hl’gltilw‘lg'ghbqul .J, 2,5‘lLlWQOQOl Tmawm MM— 39?: 23545:. . ~2 53391: c. Find the maximum error using the error bounds and compare to the actual error. C'— j' 0. 00 0 6 294 “I! 1 E..- , i 14 c 19—00 5 12-5: i4 fr”??? i) 1301a” (waffllélc 1056051? ‘- '7 :: 5((5-05 “2&1 f1 W m» a; [Q 0 lo 0 O O (o “__.”.— _, «mm -—~— - /CH) -:J..J , m = 55555 cl. What is the smallest value of n that will yield an error within 0.0001? ' OJWEAEQM J . = ‘1 . s5 40 __ [Esl 4; lathe) 4 0.000: km? ng 49‘3“! L90 in. L} "v Q i. W V‘ ‘5 a , 5 i ““5 $3 (9 (+15 .1. 2L1 .._, O 00} - L6) 7;: 7"”— 7:” I310 W’— l\ (X) x6 ; 0) . W J Li "l 2 ) :3 @5100 O) ,0! \ OM desk-555‘ $935+ \ Desiré Taylor [(9 . 37023 _é l’l " L 051 H‘ W) = (Lat-l5 020-234 N We bwork 7. (1 pt) Extra Problem A student is speeding down Highway 16 in her fancy red Porsche when her radar system warns her of an obstacle 400 feet ahead. She immediately applies the brakes, starts to slow down, and spots a skunk in the road directly ahead of her. The "black box" in the Porsche records the car's speed every two seconds, producing the following table. The speed decreases throughout the 10 seconds it takes to stop, although not necessarily at a uniform rate. A A A A . . Time since brakes appllcd (see) En 1-.“ X C. Which one of the lollowing statements can you justify 95 45 from the information given? A. What is your best estimate of the total distance the stu- dent‘s-ear traveled before coming to rest (note that the best es- @A. The ”black hex” data is inconcluSive, The skunk limate is probably not the over 01‘ under estimate that you can may or may not have been hit. most easily find, use the trapezoidal approximation)? 0 B. The skunk was hit by the ear. distance = W o C. The car stopped before getting to the skunk. B. Given the fact that the Porsche slows down during break~ lag. give a sharp saote ii. overestimate of the distance traveled: W a s £5 (Pram-2 1009+ 3 ex: 2 9-m.miw l Vt '2, l. tuiderem'mme of the distance traveled: Te” 1 ( (D an + zit-m «r 24243 t arcs) + 2082:.) + 1000)) ” ”a," j , [015+ 2. 35 + agar—3+ 2.254.. 2216‘ + o] :.qg6’$e (,5: /2.\ l: «0607 t l? 1231“" PM) Witch 10(9)] 1:: more 2 l: o (a) «r @013 am» slits} +-«P 00)] 125—: ,: aaofit Desiré Taylor Math 1242 ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern