Ingenier\u00eda de las Reacciones Qu\u00edmicas 2da Edicion Octave Levenspiel (2017_05_10 04_17_41 UTC).pdf - SIGUENOS EN LIBROS UNIVERISTARIOS Y SOLUCIONARIOS

Ingeniería de las Reacciones Químicas 2da Edicion Octave Levenspiel (2017_05_10 04_17_41 UTC).pdf

This preview shows page 1 out of 663 pages.

Unformatted text preview: SIGUENOS EN: LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS GRATIS EN DESCARGA DIRECTA VISITANOS PARA DESARGALOS GRATIS. INGENIERÍA/ DE LAS REACCIONES QUíMIC i INGENIERÍA D E L A S REACCIONES QUÍMICAS OCTAVE LEVENSPIEL Departamento de Ingeniería Química de la Universidad del Estado de Oregón ediciones REPICA, s. a. rnth de li obm [email protected]: CHEMICAL REACTION _ second edition Ediubn orighml ENGINEERING en kwgw inglese publicedo por: John Wley and Sons, Inc., New York - opydght 0 by John WSey 0 Sons. Inc. Vemi6n eapafloh por el: Dr. Gabriel Tojo Barreiro Catedrático de Qulmica Técnica de la Universidad de Santiago de Compostela Prvpie&d de: EDITORIAL REVERTÉ, S. A. Encarnación 86 OSO24 Barcelona Reservados todos los derechos. Ninguna parte del material cubierto por este título de propiedad literaria puede ser reproducida, almacenada en un sistema de informática o transmitida de cualquier forma o por cualquier medio electrtkico, mecánico, fotocopia, grabación u otros métodos sin el previo y expreso permiso por escrito del editor. Derechos reservados: 0 1986 Editorial Rever& S.A., Barcelona, Espafia. 0 1987 Ediciones Repla, S.A. General Francisco Murguía 7 66170 México, D.F. ISBN 968616503-7 ISBN 64291-73250 Impreso en México (Editorial Reverté, S.A.) Printed in Mexico Prólogo La Ingeniería de las reacciones químicas es la rama de la Ingeniería que estudia las reacciones químicas a escala industrial. Su objetivo es el diseño y funcionamiento adecuado de los reactores químicos, y probablemente la Ingeniería de las reacciones químicas es la actividad que, por sí sola, hace que la Ingeniería química constituya una rama de la Ingeniería. En una determinada situacidn, el técnico se enfrenta con una serie de cuestiones: la información necesaria para abordar un problema,‘cómo obtener la información más adecuada y cómo seleccionar el diseño más favorable entre las distintas alternativas posible. El objeto de este libro es enseñar a responder a estas preguntas adecuadamente. Para esto se le da gran importancia a los argumentos cualitativos, a métodos de diseño sencillo, a los procedimientos gráficos y a la comparación entre los distintos tipos de los reactores más importantes; con ello se pretende desarrollar un fuerte sentido intuitivo orientado hacia el diseño más acertado, que puede después guiar y reforzar los métodos formales de diseño. Este es un libro de rexto y, por lo tanto, se estudian en primer lugar una serie de conceptos sencillos que después se extienden a fenómenos más complejos. Por otra parte, se insiste más en el desarrollo de una técnica de diseño aplicable a todos los sistemas, tanto homogéneos como heterogéneos. Como se trata de un libro de introducción se considera detenidamente la formulacidn de ciertas hipótesis, se discute el por qué no se emplea una determinada alternàtiva y se indican las limitaciones del tratamiento cuando se aplica a situaciones reales. Aunque el nivel matemático no es difícil (lo único que se necesita lineales de primer orden), no son cálculos elementales y ecuacionés .diferenciales quiere decir que las ideas y conceptos utilizados sean particularmente sencillos; no es fácil desarrollar nuevas líneas de pensamiento y nuevas ideas intuitivas. Considero que la resolucibn de problemas, que se lleva a cabo aplicando los conceptos a situaciones nuevas, es esencial para el aprendizaje. En consecuencia se han incluido un gran número de problemas, algunos son muy sencillos‘ y solamente requieren razonamientos cualitativos, otros complementan las cuestiones V VI PROLOGO estudiadas en el texto, mientras que otros exigen cierto grado de imaginación. Se da una visión de conjunto en algunos problemas no convencionales que sirven para poner de manifiesto la flexibilidad de los métodos empleados que pueden aplicarse a situaciones muy diferentes. LO que me ha llevado a esta nueva edicidn ha sido lo siguiente: En primer lugar he de indicar que se ha seguido la misma línea que en la obra original intentando mantener un planteamiento sencillo; sin embargo, como es. inevitable en toda segunda edición, es más extensa que la original. En todo caso, la primera mitad de esta edicibn abarca esencialmente las mismas cuestiones que la original, aunque se ha introducido una serie de pequeñas modificaciones juntamente con algunos cambios importantes. La segunda mitad, la parte que trata de fluio no ideal y sistemas heterogéneos ha sido reestructurada totalmente y ampliada de modo significativo; sin embargo, se ha mantenido el mismo nivel en cuanto a su presentación. En esta nueva edicidn he prescindido de algunas cuestiones que no abordaba en las explicaciones de Cátedra. También he prescindido de unos 80 problemas que consideré inadecuados por distintas razones. Estos problemas han sido sustituidos por otros 160 nuevos problemas, y la mayoría son más sencillos. Creo que estos mini-problemas constituyen un medio eficaz para la enseñanza. Me pregunto frecuentemente qué es lo que he de enseñar, a cada nivel y cómo he de hacerlo. Creo que los Capítulos 1-8, 11 y 14 constituyen una base adecuada de la enseñanza para licenciatura, sin embargo, si ~610 se estudia un curso, en vez de estudiar unos cuantos capítulos prefiero dar una visidn de conjunto de todos ellos. Por efemplo, en mi enseñanza a lo largo de un curso a estudiantes con conocimientos amplios de química-física prescindo de los Capítulos 1, 2 y 3, sustituyéndolos por una o dos conferencias y la resolución de unos cuantos problemas representativos que sirvan para definir los términos. Después, como los Capítulos 6, 7 y 8 refuerzan los conceptos del Capítulo 5, estudio brevemente estas cuestiones y entro directamente en la resolucidn de problemas. Finalmente, en el Capítulo 14 prescindo de las secciones referentes a la distribución del producto y al diseño de lechos fluidizados. Para el programa de graduados estudiamos del Capítulo 9 en adelante. Aunque su estudio no resulta matemáticamente difícil, han de considerarse distintos aspectos y asimilar nuevos conceptos, y yo creo que no pueden estudiarse en menos de dos semestres. El plan anterior es el que yo desarrollo, sin embargo, cada profesor ha de llevar a cabo su propio plan. En realidad, sé que este programa se ha desarrollado con éxito en un curso de enseñanza programada; quizá sea interesante profundizar en este campo. Deseo expresar mi agradecimiento, en primer lugar, a Tom Fitzgerald, un colega que me ha ayudado e insinuado una serie de ideas, buenas y malas, y espero que yo haya sido capaz de discriminarlas. Quiero expresar también mi agradecimiento VII PR6LOGO a Milorad’ Dudukovic, de Belgrado, por su extensa revisión y crítica del manuscrito, a Moto Suzuki, de Tokyo, por sus observaciones sobre el Capítulo 10 y a Soon ]ai Khang, de Seul, por su ayuda en el Capítulo 15. También expreso mi agradecimiento a los muchos profesores y discípulos que me han escrito por sus, sugerencias. Espero que no les desilusione con esta nueva edicibn. Finalmente, mi especial agradecimiento a Mary Jo, por su ayuda y continuo estímulo. O CTAVE Otter Rock, Oregon, LEVENSPIEL fnd ice analítico 1 INTROIDUCCIÓN Termodinámica Cinetica química Clasificación de las reacciones Variables que afectan a la velocidad de reacción Detinición de la velocidad de reacción Plan de la obra CINETICA DE LAS REACCIONES HOMOGÉNEAS /” Factor dependiente de la concentración en la ecuación cinética Reacciones simples y múltiples Reacciones elementales y no elementales Punto de vista cinético del equilibrio en reacciones elementales Molecularidad y orden de reacción Coeficiente cinético k Representación de la velocidad de reacci6n Modelos cinéticos para reacciones no elementales Ensayo con modelos cinéticos Factor dependiente de la temperatura en la ecuación cinética Dependencia de la temperatura según la ecuación de Arrhenius Dependencia de la températura según la termodinámica , Dependencia de la temperatura a partir de la teoría de colisión Dependencia de la temperatura a partir de la teoría del estado de transición Comparación de ambas teorías Comparación de las teorías con la ecuación de Arrhenius Energía de activación y dependencia de la temperatura IX 9 10 10 ll 12 13 14 14 16 20 24 24 24 25 27 28 30 31 X INDICE ANALITICO Pre’dicción de la velocidad de reacción a partir de las teorías anteriores Investigación del mecanismo Predicción teórica de la velocidad de reacción Factores que dependen de la concentración Factores que dependen de la temperatura Empleo en el diseño de los valores predichos Problemas 32 33 36 36 36 37 38 3 INTERPRETACIÓN DE LOS DATOS OBTENIDOS EN UN REACTOR DISCONTINUO 45 Reactor discontinuo de volumen constante Método integral de análisis de datos Método diferencial de análisis de datos Reactor discontinuo ‘de volumen variable Método diferencial de análisis Método integral de análisis Temperatura y velocidad de reacción Investigación de una ecuación cinética Problenias 46 48 74 79 81 81 85 93 96 4 INTRODUCCl6N , AL DISEAO DE REACTORES J/ 107 5 REACTORES IDEALES Reactor ideal discontinuo Tiempo espacial y velocidad espacial Reactor de flujo de mezcla completa en estado estacionario Reactor de flujo en pistón en estado estacionario Tiempo de permanencia y tiempo espacial para sistemas fluyentes Problemas 6 DISEAO PARA REACCIONES SIMPLES 103 i Comparación de tamaños en sistemas de un solo reactor Reactor discontinuo 108 110 111 118 127 129 137 138 138 í nd ice analítico L--1 INTRODUCCIÓN Terhodinámica Cínetica química Clasificación de las reacciones Variables que afectan a la velocidad de reacción Definición de la velocidad de reacción Plan de la obra 2 CINÉTICA DE LAS REACCIONES HOMOGÉNEAS /+ Factor dependiente de la concentración en la ecuación cinética Reacciones simples y múltiples Reacciones elementales y no elementales Punto de vista cinético del equilibrio en reacciones elementales Molecularidad y orden de reacción Coeficiente cinético k Representación de la velocidad de reacci6n Modelos cinéticos para reacciones no elementales Ensayo con modelos cinéticos Factor dependiente de la temperatura en la ecuación cinética Dependencia de la temperatura según la ecuación de Arrhenius Dependencia de la temperatura según la termodinámica Dependencia de la temperatura a partir de la teoría de cofisión Dependencia de la temperatura a partir de la teoría del estado de transición Comparación de ambas teorías Comparación de las teorías con la ecuación de Arrhenius Energía de activación y dependencia de la temperatura IX 1 2 3 4 5 6 7 9 10 10 ll 12 13 14 14 16 20 24 24 24 25 27 28 30 31 XI INDICE ANALITICO Comparación entre el reactor de mezcla completa y el de flujo en pistón para reacciones de primer y segundo orden Variación de la relación de reactores para reacciones del segundo orden Comparación gráfica general Sistemas de reactores múltiples Reactores de flujo en pistón en serie y/o en paralelo Reactores de mezcla completa de igual tamaño conectados en serie Reactores de flujo de mezcla completa de tamaños diferentes en serie Reactores de tipos diferentes en serie Reactor con recirculación Reacciones autocatalíticas Problemas 7 DISEAO PARA REACCIONES MULTIPLES 8 138 141 141 147 147 148 154 158 159 165 173 179 ,. Reacciones en paralelo Reacciones en serie Reacciones sucesivas de primer orden Estudio cuantitativo para reactores de flujo en pistón o para reactores discontinuos Reacciones sucesivas irreversibles de diferentes órdenes Reacciones reversibles en serie o en paralelo Reacciones en serie-paralelo Extensiones y aplicaciones Conclusión Problemas 180 191 191 EFECTOS DE LA TEMPERATURA Y DE LA PRES16N 231 Reacciones simples . Cálculo de los calores de reacción a partir de la termodinámica CBlculo de la constante de equilibrio a partir de la termodinámica Procedimiento grdfico general de diseño Progresión de temperatura óptima Efectos caloríficos 194 200 200 203 214 219 220 232 232 234 242 242 243 XII INDIICE ANALITICO Operaciones adiabáticas Operaciones no adiabáticas Consideraciones Estudio del problema especial de reacciones exotérmjcas en reactores de mezcla completa Reacciones múltiples Variación de la distribución del producto con la temperatura Variación del recipiente (o T) con la temperatura para obtener la máxima producción Observaciones Problemas 243 249 256 252 262 262 264 267 266 277 9 FLUJO NO IDEAL Distribución del tiempo de residencia de los fluidos en los reactores Curva E. Distribución de las edades del fluido que sale de un recipiente Métodos experimentales , Curva F Curva C Relaciones entre las curvas F, C y E y el etiempo mediom en recipientes cerrados Conceptos matemáticos utilizados Modos de emplear la información sobre la distribllción de edades CBlculo directo de la conversión por la información del trazador Modelos para flujo no ideal Modelo de dispersión (flujo disperso en pistón) Empleo del modelo de dispersión cuando el grado de dispersión es pequeño Empleo del modelo de dispersión cuando el grado de dispersión es grande Observaciones Determinación experimental de la intensidad de la mezcla de fluidos Reaccibn química y dispersión Modelos de tanques en serie Chlculo de la conversi.ón con el modelo de tanques en serie Aplicaciones Modelos combinados 277 279 280 280 282 282 285 291 294 297 298 300 303 306 310 313 319 322 323 326 . INDICE ANALITICO xv Mezcladores-sedimentadores (flujo en mezcla en las dos fases) Modelos de contacto semicontinuo Destilación reactiva y reacciones extractivas Problemas completa 14 REACCIONES CATALIZADAS POR SOLIDOS Ecuación de velocidad La película gaseosa como etapa controlante El fenómeno de la superficie como etapa controlante Caso en que la resistencia a la difusión en los poros sea importante Efectos caloríficos durante la reacción Combinación de resistencias para partículas en condiciones isotérmicas Métodos experimentales para la determinación de velocidades Comparación entre los reactores experimentales Determinación de las resistencias controlantes y de 1. la ecuación de velocidad Distribución del producto en las reacciones múltiples Descomposición de un solo reactante por dos caminos Descomposición conjunta de dos reactantes Reacciones en serie Extensión a los catalizadores reales Aplicación al diseño Reactores adiabáticos de lecho relleno por etapas Reactor de lecho fluidizado Problemas 15 DESACTIVACl6N DE LOS CATALIZADORES Mecanismo de la desactivación del catalizador Ecuación cinética Determinación experimental de la ecuación cinética ‘Una carga de sólidos: determinación de la velocidad cuando la desactivación es independiente de la concentración Una carga de sólidos: determinación de la velocidad para la desactivación en paralelo, en serie y lateral 483 491 492 495 505 507 510 510 515 525 529 531 538 537 541 542 543 544 546 557 561 568 577 591 592 595 597 598 604 xv1 INDICE ANALITICO Reactores experimentales con flujo de sólidos Determinación experimental del mecanismo de desactivación Diseño Problemas 606 606 619 INDICE DE AUTORES 625 INDICE ALFABÉTICO 629 606 Símbolos No se incluyen en esta relación los símbolos empleados circunstancialmente y definidos en cada caso. Para aclarar las dimensiones de los diferentes símbolos se dan las unidades Cgs correspondientes. a, b, . . . , r, s, . . . , coeficientes estequiométricos de las sustancias reactantes A, B, . . . , R, S, . . . a área de interfase por unidad de volumen de !a torre, cmz/cm3; solamente en el capítulo 13 a actividad de una pastilla de catalizad&; adimensional; véase ecuación (15-4) ; solamente en el capítulo 15 área de interfase por unidad de volumen de líquido, cm2/cm3. ai, aS solamente en el capítulo 13 A, B,... reactantes concentración del reactante A, moles/cm3 CA calor específico molar, cal/mol. “C CP C curva respuesta adimensional de una sefial trazadora que corresponde a una señal de entrada en impulso idealizado; vease la ec. (9-3) calor específico de la corriente de fluido por mol de reactante CP (normalmente se toma como referencia el reactante A), cal/mol de A-T calor específico de la corriente de alimentación sin reaccionar C’P por mol de reactante de referencia, cal/mol - “C calor específico de la corriente de producto si el reactante de C”P referencia esth completamente convertido, cal/mol.“C d diámetro, cm d orden de desactivación; véase pág. 596 diámetro de la partícula, cm 4 diámetro del tubo, cm 4 D dispersión o coeficiente de dispersión axial, cm2/seg; véase página 299 XVII XVIII 53 93 E E E E d I F F curva G G’ AG” h H H H’ H” AH, Z SIMBOLOS coeficiente de difusión molecular, cm2/seg coeficiente de difusión. efectiva en una estructura porosa, cm2/seg energía de activación; vhse la ec. (2-32); para las unidades vhse la nota de pie de página, pág. 24 factor de crecimiento en transporte de masa con reacción. vease pág. 455 enzima función de distribución de salida, adimensional; vbse phg. 279 factor de eficacia, adimensional, véase la ec. (14-11) fugacidad, atm; solamente en el capítulo 8 fracción en volumen de una fase; solamente en el capítulo 13 caudal de sólidos, o caudal másico si la variación de la densidad del sólido es. despreciable, cm*/seg, o g/seg; solamente en el capitulo 12 caudal molar de la sustancia A, mol/seg caudal de sólidos de tamaño Ri. cm”/seg o g/seg, solamente en el capítulo 12 respuesta adimensional del trazador que corresponde a una seAal de entrada en escalón, fracción de [email protected] en la corriente de salida; véase pág. 280 = G’p&z, caudal molar ascendente de inertes en la fase gaseosa por unidad de área de sección normal de torre, moles/ cm2 seg, solamente en el capítulo 13 caudal molai ascendente de todos los gases por unidad de área de sección normal de torre. mol/cm**seg; solamente en el capítulo 13 entalpía libre normal de una reacción para la estequiometría considerada, cal; vease la ec. (1-2) o (8-9) altura de la columna de absorción, cm entalpía, cal coeficiente de distribución entre fases, para sistemas en fase gaseosa H = p/C, atm.cms/mol, constante de la ley de Henry; solamente en el capítulo 13 entalpía de la corriente de alimentación sin reaccionar por mol de entrada del reactante de referencia A, cal/mol de A. entalpía de la corriente de producto si el componente de referencia ha reaccionado completamente, cal/mol calor de reacción a la temperatura T, para la estequiometría considerada, cal; v6anse las ecs. (l-l) o (8-1) calor de reacción por mol de reactante de referencia, caljmol parámetro de coalescencia; vtase ec. (W14) SIMBOLOS J k k eff k, kl ks K &c L 1 L L L’ ??lL M N X I X intensidad de segregación; véase ec. (10-13) véase la coeficiente cinttico de la reacción (mol/cm3)l-“/seg; ec (2-6) coeficiente cinético para la reacción de desactivación; solamente en el capítulo 15 conductividad térmica efectiva, cal/cm . seg- “C; solamente en el capítulo 14 coeficiente de transporte de materia, cm/seg; vease la ec. (12-4). En el capítulo 13, k, se refiere específicamente a la fase gaseosa, moles/cm2.seg.atm; véase la ec. (13-2) coeficiente de transporte de materia en fase líquida, cmfseg; véase la ecuación (13-2) coeficiente cin6tico de la reacción de primer orden basado en la unidad de superficie, cm/seg; véase capítulo ll o la pág. 518 constante de equilibrio para una reacción de estequiometría considerada, adimensional; veanse las ecs. (1-2) o (8-9) coeficiente de intercambio burbuja-nube en lechos fluidizados, segl véase ec. (9-76) coeficiente de intercambio nube-emulsión en lechos fluidizados, segl; dase ec. (9-77) r. véase la ecuación (8-10) coeficiente integral de transporte de materia basado en la fase gaseosa, mol/cm2-seg.atm longitud, cm longitud de reactor, cm = L’CVC,, caudal molar descendente de inertes en la fase Iíquida por unidad de área de sección normal de torre, mal/ cm2. seg; solamente en el capítulo 13 caudal molar descendente de todo el líquido por unidad de área de sección normal de torre, mol/cm%eg; solamente en el capítulo 13 = L m módulo de Thiele, adimensional, ...
View Full Document

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture