final exam.xlsx - NAME CLEVERSON ESENE STUDENT NUMBER...

This preview shows page 1 - 11 out of 188 pages.

NAME CLEVERSON ESENE STUDENT NUMBER 201475050 COURSE PHASE BEHAVIOR OF PETROLEUM RESERVOIR FLUIDS
Image of page 1

Subscribe to view the full document.

Assume P(MPa)= 12.31 T(K)= 328.15 P(Psi)= T(F)= 113 get Properties of each component from Danesh Appendix Table A Number Component MW(kg/kgmole) Tc(k) Pc(Mpa) 1 28.014 126.1 3.394 2 44 304.19 7.382 3 C1 16.043 190.56 4.599 4 C2 30.07 305.32 4.872 5 C3 44.096 369.83 4.248 6 iC4 58.123 408.14 3.648 7 nC4 58.123 425.12 3.796 8 iC5 72.15 460.43 3.381 9 nC5 72.15 433.78 3.199 10 C6 86.177 507.6 3.025 11 C7+ 252 770 1.5 The PR-EOS parameters for fluid co Number Component Eq. Zi*MW Tc*Zi 1 N2 0.0164 0.4594296 2.06804 2 CO2 0.0008 0.0352 0.243352 3 C1 0.284 4.556212 54.11904 4 C2 0.0716 2.153012 21.860912 5 C3 0.1048 4.6212608 38.758184 6 iC4 0.042 2.441166 17.14188 7 nC4 0.042 2.441166 17.85504 8 iC5 0.0191 1.378065 8.794213 9 nC5 0.0191 1.378065 8.285198 10 C6 0.0405 3.4901685 20.5578 11 C7+ 0.3597 90.6444 276.969 12.31 Pseudo Component Tc(K) Pc(MPa) ∑(Zi*Pci)/∑Zk 1 16.769062417 187.352032 4.5407808765 2 52.795350339 392.961448 3.9954706576 N 2 CO 2 Calcaulte the Parameters of each component( EOS: SRK) mole fraction(Zi) assume the initial guess pressure P (Mpa)= calcualte the Properties of Pseudo Components(groups_∑(Zi*θi)/∑ MW(kg/kgmol e) ∑(Zi*MWi)/∑Z k ∑(Zi*Tci)/∑Z k CO2,N2,C 1 C 2-6
Image of page 2
3 252 770 1.5 Pseudo a b A 1-((P-Pa)/(Pk-Pa))^n 1 0.14440319 0.0297219446 5.07397688 0.6641064311 2 1.29477453 0.0708486138 0.38052201 0.6641064311 3 28.7854768 0.3697846029 7.5782E-005 0.6641064311 The liquid composition remains unchanged in bubble point calcua Pseudo Component mole fraction in vapor (yi) xi yi=xi*Ki yi=xi*Ki 1 CO2,N2,C1 0.3012 1.52828184 1.3901385172 2 C2-6 0.3391 0.12903501 0.0316644865 3 C7+ 0.3597 2.7259E-005 8.98599968779248E-008 1.65734411 K12 K13 K23 0.00052834 0.00988372 0.0009593716 mol% 1 N2 0.0164 0.3012 CO2 0.0008 C1 0.284 2 C2 0.0716 0.3391 C3 0.1048 iC4 0.042 nC4 0.042 iC5 0.0191 nC5 0.0191 C6 0.0405 3 C7+ 0.3597 0.3597 C 7+ corrected Ki, when P> 3.5 Mpa Equilibrium constant (Ki) (Pci/Pk)^(A- 1)*(Pci/P)EX P[5.37*A*(1 +ωi)*(1- Tci/T)] mole fraction in liquid (xi) mole fraction in vapor (yi) The binary interaction parameters between the pseudo-componen
Image of page 3

Subscribe to view the full document.

C2 C3 iC4 N2 0.0407 0.0763 0.0944 CO2 0.1363 0.1000 0.1000 C1 0.0078 0.0080 0.0241 mol% 0.0716 0.1048 0.0042 0.0164 0.00117424 0.00171872 0.00006888 0.0008 9.39392E-007 0.000001375 5.5104E-008 0.284 2.66787328E-007 3.904932E-007 1.5649536E-008 4.7791568E-005 0.0001311383 6.502272E-006 0.000000128 1.374976E-007 5.5104E-009 2.08094116E-009 3.123945E-009 3.771538176E-010 0.00052834 interaction parameters N2 CO2 C7+ 0.1500 0.1000 mol% 0.0164 0.0008 0.3597 0.00589908 0.00028776 0.000884862 0.000028776 0.00988372 C2 C3 iC4 C7+ 0.0200 0.0040 0.0020 mol% 0.0716 0.1048 0.0042 0.3597 0.02575452 0.03769656 0.00151074 0.0005150904 0.0001507862 3.02148E-006 0.00095937 interaction parameters K 12 K 13 interaction parameters K 23
Image of page 4
Separator condition T = 70°F, P = 220 Psia
Image of page 5

Subscribe to view the full document.

R= 0.0083144 C7+ (°C × 1.8) + 32 =°F (°F − 32) ÷ 1.8 =°C acentric factor(ω) mass fraction(mi) mole number mole fraction(Zi) 0.0403 0.0005 1.785E-05 0.0164 0.2276 0.0043 9.773E-05 0.0008 0.0995 0.0624 3.890E-03 0.284 0.0995 0.031 1.031E-03 0.0716 0.1523 0.0327 7.416E-04 0.1048 0.177 0.0089 1.531E-04 0.042 0.2002 0.0244 4.198E-04 0.042 0.2275 0.0111 1.538E-04 0.0191 0.1964 0.0109 1.511E-04 0.0191 0.3013 0.0397 4.607E-04 0.0405 0.8114 0.7741 3.072E-03 0.3597 omponents at T are calcualted as below: Pc*Zi ω*Zi 0.0556616 0.00066092 0.0059056 0.00018208 1.306116 0.028258 0.3488352 0.0071242 0.4451904 0.01596104 0.153216 0.007434 0.159432 0.0084084 0.0645771 0.00434525 0.0611009 0.00375124 0.1225125 0.01220265 0.53955 0.29186058 acentric factor(ω) mole number mole fraction ∑(Zi*ωi)/∑Zk ∑Zk 0.42747 (R^2*Tc^2)/Pc 0.0966168659 5.036E-03 0.3012 0.2284303157 0.1746587437 1.619E-03 0.3391 1.1420875964 ∑Zk) Lumping ac, Mpa(m^3/kgmole)^2
Image of page 6
0.8114 3.533E-03 0.3597 11.6803985319 Ki, when P < 3.5 Mpa Pk 252 75.328 4.6153337225 75.328 0.0933780198 75.328 2.49819285176E-007 altions. So, the liquid composition is calculated using Danesh Eq 5.4-5.6 M c7+ Equilibrium constant (Ki) 0.414*M c 7+ - 29 (Pci/P)*EXP[5.37*(1+ ωi)*(1-Tci/T)] nts of k and q, are determined from:
Image of page 7

Subscribe to view the full document.

nC4 iC5 nC5 C6 0.0700 0.0867 0.0878 0.1400 0.1000 0.1000 0.1000 0.1000 0.0056 0.0078 0.0019 0.0374 0.0042 0.0191 0.0191 0.0405 0.00006888 0.00031324 0.00031324 0.0006642 5.5104E-008 2.50592E-007 2.50592E-007 5.3136E-007 1.5649536E-008 7.1168128E-008 7.1168128E-008 1.5090624E-007 4.8216E-006 2.7157908E-005 2.7502472E-005 0.000092988 5.5104E-009 2.50592E-008 2.50592E-008 5.3136E-008 8.76374016E-011 5.551113984E-010 1.352194432E-010 5.643893376E-009 C1 0.0550 0.284 0.1021548 0.005618514 nC4 iC5 nC5 nC6 0.0010 0.0000 0 0.0000 0.0042 0.0191 0.0191 0.0405 0.00151074 0.00687027 0.00687027 0.01456785 1.51074E-006 0 0 0
Image of page 8
MW liquid MW gas Specific gravity gasSpecific gravity liquid 91.64 22.17 0.764 0.701
Image of page 9

Subscribe to view the full document.

API MW(kg/kgmole) 842.9 34.5 252 Component Mole % 0.18 0.13 Methane 61.72 Ethane 14.1 Propane 8.37 iButane 0.98 nButane 3.45 iPentane 0.91 nPentane 1.52 Hexanes 1.79 Heptanes P 6.85 Total 100 m α Tr ac*α T/Tc 0.6335439117 0.6321542 0.1444031857 0.029721945 1.7515156 0.7513368679 1.1336911 1.2947745254 0.070848614 0.8350692 density,kg/m 3 CO 2 N 2 (m^3/kgmole)^ 2 m^3/kgm ole 0.48508+1.55171 *ω-0.15613*ω^2 [1+m(1- Tr^0.5 ) ]^2 0.08664* R*(Tc/Pc)
Image of page 10
1.6413461921 2.4644259 28.7854767939 0.369784603 0.4261688 á
Image of page 11
You've reached the end of this preview.
  • Spring '10
  • Dr.JackieChang

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern