{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Cal.HW-1

# Cal.HW-1 - Gaspar Adrian Homework 1 Due Sep 4 2007 3:00 am...

This preview shows pages 1–2. Sign up to view the full content.

Gaspar, Adrian – Homework 1 – Due: Sep 4 2007, 3:00 am – Inst: MC Caputo 1 This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time. 001 (part 1 of 1) 10 points Find the most general function f such that f 00 ( x ) = 48 cos 4 x . 1. f ( x ) = - 3 cos 4 x + Cx + D 2. f ( x ) = 4 sin 4 x + Cx + D 3. f ( x ) = 3 cos x + Cx + D 4. f ( x ) = 3 sin x + Cx + D 5. f ( x ) = - 4 sin x + Cx 2 + D 6. f ( x ) = - 4 cos 4 x + Cx 2 + D 002 (part 1 of 1) 10 points Find f ( x ) on ( - π 2 , π 2 ) when f 0 ( x ) = 5 + tan 2 x and f (0) = 5. 1. f ( x ) = 6 - 4 x - sec x 2. f ( x ) = 5 + 4 x + tan x 3. f ( x ) = 4 + 5 x + sec 2 x 4. f ( x ) = 4 + 5 x + sec x 5. f ( x ) = 5 - 4 x - tan x 6. f ( x ) = 5 + 4 x + tan 2 x 003 (part 1 of 1) 10 points Determine f ( t ) when f 00 ( t ) = 4(3 t + 2) and f 0 (1) = 4 , f (1) = 5 . 1. f ( t ) = 2 t 3 + 4 t 2 - 10 t + 9 2. f ( t ) = 2 t 3 - 8 t 2 + 10 t + 1 3. f ( t ) = 6 t 3 - 8 t 2 + 10 t - 3 4. f ( t ) = 6 t 3 + 8 t 2 - 10 t + 1 5. f ( t ) = 6 t 3 + 4 t 2 - 10 t + 5 6. f ( t ) = 2 t 3 - 4 t 2 + 10 t - 3 004 (part 1 of 1) 10 points Find the unique anti-derivative F of f ( x ) = e 3 x + 3 e 2 x + 4 e - x e 2 x for which F (0) = 0. 1. F ( x ) = e x + 3 x - e - x 2. F ( x ) = e x - 3 x + 4 3 e - x - 1 3 3. F ( x ) = e x + 3 x - 4 3 e - 3 x + 1 3 4. F ( x ) = 1 3 e 3 x - 3 x + e - x - 1 5. F ( x ) = 1 3 e

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}