{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Cal.HW-1 - Gaspar Adrian Homework 1 Due Sep 4 2007 3:00 am...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Gaspar, Adrian – Homework 1 – Due: Sep 4 2007, 3:00 am – Inst: MC Caputo 1 This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time. 001 (part 1 of 1) 10 points Find the most general function f such that f 00 ( x ) = 48 cos 4 x . 1. f ( x ) = - 3 cos 4 x + Cx + D 2. f ( x ) = 4 sin 4 x + Cx + D 3. f ( x ) = 3 cos x + Cx + D 4. f ( x ) = 3 sin x + Cx + D 5. f ( x ) = - 4 sin x + Cx 2 + D 6. f ( x ) = - 4 cos 4 x + Cx 2 + D 002 (part 1 of 1) 10 points Find f ( x ) on ( - π 2 , π 2 ) when f 0 ( x ) = 5 + tan 2 x and f (0) = 5. 1. f ( x ) = 6 - 4 x - sec x 2. f ( x ) = 5 + 4 x + tan x 3. f ( x ) = 4 + 5 x + sec 2 x 4. f ( x ) = 4 + 5 x + sec x 5. f ( x ) = 5 - 4 x - tan x 6. f ( x ) = 5 + 4 x + tan 2 x 003 (part 1 of 1) 10 points Determine f ( t ) when f 00 ( t ) = 4(3 t + 2) and f 0 (1) = 4 , f (1) = 5 . 1. f ( t ) = 2 t 3 + 4 t 2 - 10 t + 9 2. f ( t ) = 2 t 3 - 8 t 2 + 10 t + 1 3. f ( t ) = 6 t 3 - 8 t 2 + 10 t - 3 4. f ( t ) = 6 t 3 + 8 t 2 - 10 t + 1 5. f ( t ) = 6 t 3 + 4 t 2 - 10 t + 5 6. f ( t ) = 2 t 3 - 4 t 2 + 10 t - 3 004 (part 1 of 1) 10 points Find the unique anti-derivative F of f ( x ) = e 3 x + 3 e 2 x + 4 e - x e 2 x for which F (0) = 0. 1. F ( x ) = e x + 3 x - e - x 2. F ( x ) = e x - 3 x + 4 3 e - x - 1 3 3. F ( x ) = e x + 3 x - 4 3 e - 3 x + 1 3 4. F ( x ) = 1 3 e 3 x - 3 x + e - x - 1 5. F ( x ) = 1 3 e
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}