Chapter 02

Chapter 02 - 1 CHAPTER 2 Solutions for Exercises E2.1(a R 2...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 CHAPTER 2 Solutions for Exercises E2.1 (a) R 2 , R 3 , and R 4 are in parallel. Furthermore R 1 is in series with the combination of the other resistors. Thus we have: Ω = + + + = 3 / 1 / 1 / 1 1 4 3 2 1 R R R R R eq (b) R 3 and R 4 are in parallel. Furthermore, R 2 is in series with the combination of R 3 , and R 4 . Finally R 1 is in parallel with the combination of the other resistors. Thus we have: Ω = + + + = 5 )] / 1 / 1 /( 1 /[ 1 / 1 1 4 3 2 1 R R R R R eq (c) R 1 and R 2 are in parallel . Furthermore, R 3 , and R 4 are in parallel . Finally, the two parallel combinations are in series. Ω = + + + = 52.1 / 1 / 1 1 / 1 / 1 1 4 3 2 1 R R R R R eq (d) R 1 and R 2 are in series . Furthermore, R 3 is in parallel with the series combination of R 1 and R 2 . Ω = + + = k 1.5 ) /( 1 / 1 1 2 1 3 R R R R eq E2.2 (a) First we combine R 2 , R 3 , and R 4 in parallel. Then R 1 is in series with the parallel combination. Ω = + + = 231 . 9 / 1 / 1 / 1 1 4 3 2 R R R R eq A 04 . 1 231 . 9 10 20 V 20 1 1 = + = + = eq R R i V 600 . 9 1 = = i R v eq eq A 480 . / 2 2 = = R v i eq A 320 . / 3 3 = = R v i eq A 240 . / 4 4 = = R v i eq 2 (b) R 1 , and R 2 are in series . Furthermore, R 3 , and R 4 are in series . Finally, the two series combinations are in parallel. Ω = + = 20 2 1 1 R R R eq Ω = + = 20 4 3 2 R R R eq 10 / 1 / 1 1 2 1 Ω = + = eq eq eq R R R V 20 2 = × = eq eq R v A 1 / 1 1 = = eq eq R v i A 1 / 2 2 = = eq eq R v i (c) R 3 , and R 4 are in series . The combination of R 3 and R 4 is in parallel with R 2 . Finally the combination of R 2, R 3 , and R 4 is in series with R 1 . Ω = + = 40 4 3 1 R R R eq 20 / 1 / 1 1 2 1 2 Ω = + = R R R eq eq A 1 2 1 1 = + = eq s R R v i V 20 2 1 2 = = eq R i v A 5 . / 2 2 2 = = R v i A 5 . / 1 2 3 = = eq R v i E2.3 (a) V 10 4 3 2 1 1 1 = + + + = R R R R R v v s . V 20 4 3 2 1 2 2 = + + + = R R R R R v v s . Similarly, we find V 30 3 = v and V 60 4 = v . 3 (b) First combine R 2 and R 3 in parallel: . 917 . 2 ) 1 / 1 ( 1 3 2 Ω = + = R R R eq Then we have V 05 . 6 4 1 1 1 = + + = R R R R v v eq s . Similarly, we find V 88 . 5 4 1 2 = + + = R R R R v v eq eq s and V 07 . 8 4 = v . E2.4 (a) First combine R 1 and R 2 in series: R eq = R 1 + R 2 = 30 Ω . Then we have A. 2 30 15 30 and A 1 30 15 15 3 3 3 3 1 = + = + = = + = + = eq eq s eq s R R R i i R R R i i (b) The current division principle applies to two resistances in parallel. Therefore, to determine i 1 , first combine R 2 and R 3 in parallel: R eq = 1/(1/ R 2 + 1/ R 3 ) = 5 Ω . Then we have . A 1 5 10 5 1 1 = + = + = eq eq s R R R i i Similarly, i 2 = 1 A and i 3 = 1 A. E2.5 Write KVL for the loop consisting of v 1 , v y , and v 2. The result is - v 1- v y + v 2 = 0 from which we obtain v y = v 2- v 1 . Similarly we obtain v z = v 3- v 1 ....
View Full Document

This homework help was uploaded on 03/19/2008 for the course EE 331 taught by Professor Preston during the Fall '06 term at University of Texas.

Page1 / 17

Chapter 02 - 1 CHAPTER 2 Solutions for Exercises E2.1(a R 2...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online