Unit 8 Assignment Exercise BUSI 1013.docx - Unit8Exercise ,youshoulduse0, 1. H0:12=0 Ha:12<0

# Unit 8 Assignment Exercise BUSI 1013.docx - Unit8Exercise...

This preview shows page 1 - 4 out of 12 pages.

Unit 8 Exercise  Unless otherwise specified, you should use 0,05 as the level of significance 1. Consider this hypothesis test:H0µ1 - µ2Haµ1 - µ2Here µ1 is the population mean of Population 1 and µ2 is the population mean of Population 2. Use the statistics summarized from a simple random sample of each of the two populations to complete the following: (12 Points)Population 1Population 2Sample Size ( n)5060Sample mean (xbar)24.525.9Sample standard deviation (s)5.437.21a.Compute the test statistic tt = (x1x2)D0s12n1+s22n2t = (24.525.9)05.43250+7.21260  = 0  < 0 b.Compute the degree of freedom for the test statistic t ) c.What is the rejection rule using the p-value approach and  =0.05 α d.What is the p-value? e.Based on the rejection rule from c., what is your conclusion on the null hypothesis? f.Use the above data to construct a 95% confidence interval for the difference of the population meansNote that the population standard deviations are not known and therefore you cannot use the formula in Section 10.1. Use those in Section 10.2 instead. a 2 2. Responses from a customer satisfaction survey for two stores of a local hardware chain were  recorded in the attached BUSI1013-2 Independent Samples A.xls file. These responses, in the form of a satisfaction score, are taken from a random sample of customers who shopped recently at the two stores and are recorded on the scale of 1 to 10. The chain wants to use this data to test the research (alternative) hypothesis that the mean satisfaction score for the two branches is not the same. The null hypothesis is that the mean satisfaction score for the two branches is the same (  #### You've reached the end of your free preview.

Want to read all 12 pages?

• Winter '15
• • • 