# ch08-a.pdf - Chapter 8 Interval Estimation Estimate...

• 8

This preview shows page 1 - 5 out of 8 pages.

The preview shows page 3 - 5 out of 8 pages.
1Chapter 8Interval EstimationEstimate Population Mean, whensKnownEstimate Population Mean , whensUnknownDetermining the Sample SizeZ02P ( -∞ < Z < 2.00) =P ( Z < 2.00) = physical size of the area shadedRecall Example 2 from chapter6-2P ( Z < 2.00) = physical size of the area shaded = 0.9772Z02P ( Z < 2.00)= physical size of the area shaded= 0.9772P (Z > 2.00)= 1- 0.9772= 0.0228
2Z0P ( Z < 2.00)= 0.9772P (Z > 2.00)= 1- 0.9772= 0.022820228.0z2Z0P (Z > ?)= 0.05?05.0zIn-class exercise1,find:Z0P ( Z < ?)= 0.95P (Z > ?)= 0.05?05.0z
3Z0P ( Z < 1.645)= 0.95P (Z > 1.645)= 0.051.645Using Std Normal Distribution Table:645.105.0z0.050.050.9Example/2 = 0.05/2 = 0.051 -  0.9ExampleIfwe know1-   0.9,then  0.10 , /2 0.05/2+(1- )+ /20.05 + .9 + 0.05 1
40/2 = 0.05/2 = 0.051 -  0.9Standard NormalDistributionExampleIf  0.10,then/2 0.05,1-   0.9645.105.02/ZZ0/2 = 0.05/2 = 0.051 -  0.9Standard NormalDistributionExampleIf  0.10,then/2 0.05,1-   0.9P (Z < -1.645) =0.050 /2 = 0.05/2 = 0.051 -  0.9Standard NormalDistributionExampleIf  0.10,then/2 0.05,1-   0.9645.105.0

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 8 pages?