End of preview
Unformatted text preview: Name: Jhoe gas-5.. .4
University ID: 5m 734 Thomas Edison State University
Calculus II (MAT—232) Section no.: 00¢] ()1, Semester and year: Dec (7 Written Assignment 2 Answer all assigned exercises, and show all work. Each exercise is worth 4 points. Section 6.2 4. Evaluate the integral. 1 Z l
U‘lnx alwg'dx YxlnXJxaq’zy /"'-"'—1X&(,r
1
”T lenxdx AV: xJ)! V : 6. Evaluate the integral. 1
[/3 in X in)! . ,— u1 in X + C
lnx ——-d,r :7 .u/u :7 -—-— + c' :7 .--—-—'
le" Ju= Mr K 1 1
18. Evaluate the integral.
1: . do I
Ixsinxzdx X U A“ ji'flzv)?’ "7 i SMAJJU '
Zx/Fa/u ‘4 X64” 7" 22. Evaluate the integral. . t r z ' 7y Aw
I - ,'fz' l I J H ).-— '
, 2 3x (1:); alu- C Jr fag: - r 42h” ,—> 3&3 Ila/Fe X A“ 632/1!
Ixe dx 2!! ‘9” “—7—“ 'o .1 fr
0 JU' Ky V-..__.-—‘ Q7, 'gTr/ \f 8,-—
3 e} 7 . 31" :7 i7“ 3 {T ‘5. ’3’") J
'3' ”Mr H” J)’ 3 5 D 3
' . 7 I 3 7 L1:
‘5 r ,3 3 2 .f‘. -— —/))-7_€,-5 [My
“’5; fits?) ”‘5“3’l1 4‘9 v 3 7"
I ‘I I} "‘A
WA2,p1 ,7 63,39; +i .34)-) 58. __£
' < a, '3“ 17 24. Evaluate the integral. A
V‘.‘ In K Dill: X Y 2 J.
Lxlnxdx all”; Va;— 1. l ’J I ‘3“
1x1)“ ’5'1XJX :7 ix‘lM—fix .- 1’"7~_.£_ -‘~. -._._7 _ 46. Evaluate the integral using integration by parts and substitution. Ut‘lvr‘ ,' “Velcrl Mu-u +C
len(4+x2)dx ”(1:2xe L f, U [(U' ) J: fxanHx’Hr 5"’1'((t/Ui)l"(qry1)’(wx‘))ic Section 6.3 8. Evaluate the integral.
4 4w” ”5“” nL/thfJU='r)’_’_‘_£%’i_zf”(_’_;£‘i’_l.”}du
' _ 3 'l
Ism(x 3)::15: U 9” )lU—ZH‘Z 1 1 2‘7 1¢J( 7))6!“
:- ‘f_ o ”‘(°TZU) :3qr(l. (an; 2 [Haj v
:y? .l J. 7“ ' ‘r W?” * 125m 4” H :46”) ' #Y'T/r’lU-JFgl, (5m ”(x-Jl' ( 10. Evaluate the integral.
U: (n l’ Icotxcsc4xdx Av: 15c x (ctr Jr
" r ‘1' '
“('10:)“ (It . M "fu‘tdul IU’JU =7 3; *0 .7 if?!” 45/
18. Evaluate the integral.
2 - 2 f E
I(cos x+sm x)dx s5J My —. y-rc
(051x t mm; 28. Evaluate the integral. 1 U.‘X { l
half—1d" do: Zrdx : HEW/aria“ ”Eff/”m“ 371fvjé+tfl£olu I . 5 I 7/!
1(ZUV? ZU’J/z f( =)?()(1_’)/‘+’1'(xzvl) +6 \
:71 5 f 3 ’ WA 2, p. 2 .\_/ 30. Evaluate the integral. V‘ 15-01?
J- x dx lemrgaaalu Section 6.4 2. Find the partial fractions decomposition and an antiderivative. x‘—lp—’Z [4‘3
5x—2- 5X-Z A_ 3 _ =1.) ‘1 4'7 ‘2‘ ‘ _
x2—4 (“UH-ll ”Xi—1’4}: 251(2 .(r ) WY 1 y, 1‘? 0‘2- C :0
1 + J, -7 j 2 _
=7 x“ x-z ’ in; if; ’7 [#1wa + g In I)! g] +C
12. Find the partial fractions decomposition and an antiderivative.
1 ----I.-__—.I -‘7 ‘1 hx 3? — " 'l a
x3+4x XUWI ’ " VWW'U A" 6 L
r
L- r A, . I,./,1-;/.x{x+2)(y 2} m
X (Ml/f3
16. Find the partial fractions decomposition and an antiderivative.
2x _ 2x 351*. ,,2x'4{x“1)+fi:mz 1:6 2 o / {Jr-:17 ’9‘ (NJ ”I
22. Evaluate the integral. “"-
—2/7 I) .2/ .
2 ( 7 2/
x +1 :7 l :7 —-—-— -¢ .____?./ (II)
——dx w I x- G 4 -
J'xZ—SxH6 / y r y (. JV 1725035210 .7 2;... 6w; .7 $7.1; w; 90-?) I
/
l f C.» Section 6.6 8. Determine whether the integral converges or diverges. Find the value of the integral if it COHVCI‘gBS. q, _[ . I II? T 1
u: x‘ Ju 2x1! W75 ”fr =7 27 [rank (7'5“?) 9 {W m”)
26 3. u.— e” o -4. NW me « "
‘(a)Jx dx 7 (12)] xe dx . a1 I... ,a_ m . .
3" T?” “m _ 21 _ 5( e 5;? 4f”:
.. ill (LT)-§L[Zx:))_? )(ZCJY Air .7 5x '. fist". _ I
'7 1 ‘ 3 '3/X 3 ~15;— ,) 51% W :>""‘ (M 1 2 .r ’ M ‘ J
" I; "78 *%{f€k‘/’)'>r"i , T/fiikejyr-liiin c [M 6rd) 7’ 9"" a /
10. Determine whether the integral cMonverges or diverges. “me the value of the integral if it N U, 9,.“ converges. u .— r 5 1' JV T" ’
u: a I _ _ 6-9,}
1",- {Saint ) 5‘: J“, y _ V lhfx ' it
(a) L cosxdx flail; (W Y (b) L cosxe ' dx '7 p"t(TC—Ln I? i I)
:7 if” ,‘ - ”'1
[1470!!(IAR I 0) .
diavfjfflj
AIV'II-H’j 16. Determine whether the integral converges or diverges. Find the value of the integral if it converges.
2 x 2‘14“}, I :7 1.,» if' XI— 1:) L” in Riv”
(a) It) xz—IdXflJE I“ if: 1(1))[0 (x122) dx jm—Ffl XL Re“ J Li RAW ! I
- , .- .1 ‘_ . L *_ _
”xii- z '" ix 0 Ti. 7+ 2 i” (i ”(W)“?
.. I'M 3' 1 ' r
haw/K THW) w;
Section 3.2
2. Find the indicated limit.
2
x "'4 -Z {X1 2 L 1111—— .-‘: Elwyn hm Y'f , L
1L2x2—3x+2 v—a? 1—20”) rfi—fl j 12. Find the indicated limit. 7. a 1 1 it lim taI’Ii—x :7 " :_I 2M = 4;”: I ‘1‘” X ‘t 2 D! 4’ r/IFEL (“I
x—>0 x m}:1 (l x (J ‘ , WA2,p.4 14. Find the indicated limit. inn—1:74,“ 9;; -/
F 3:04) ’ 22. Find the indicated limit. 31— ,M’ J.
limlnx 27"” .. z x—Mo “it? - :73: .
fiffi in n ‘7 30. Find the indicated limit. firjfif: .- 2']: o 4 TI?’ C"
27"”), x lim
x-+0+ In x 33. Find the indicated limit. L in (a! x ' l x f r _ ._. 44,: x
11m cosx U" :7 ln : [MI x Mr (:1? :7 m __, _7 x40+( ) y Ydfi‘ Yafi x l WA2,p.5 ...
View
Full Document