# hw7 - jth734 Homework 7 Odell(58340 This print-out should...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: jth734 Homework 7 Odell (58340) This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0 points 1. I = 4x2 4 - x2 dx . 2. I = 3. I = 4. I = 5. I = 003 10.0 points 1 Determine the integral I = 2 (x2 + 4) 2 3 dx . Evaluate the integral 2 I = 0 1. I = 2 2. I = 4 3. I = 2 -1 2 3 2 - 3 2 3 - 2 -1 2 3 - 3 2 4. I = 4 5. I = 2 6. I = 1 +C 2 x2 + 4 x +C 2 x2 + 4 x2 + 4 +C x x2 + 4 +C 2x x x2 + 4 +C 2 x +C x2 + 4 004 10.0 points 6. I = 2 -1 3 002 10.0 points x2 dx . (4 - x2 )3/2 x2 +C 2 x +C 2 x +C 2 Determine the indefinite integral I = 1. I = -4 ln x- 2. I = 3 ln x + 3. I = -4 ln x+ 4. I = 3 ln x + 5. I = 3 ln x - 005 3 - 4x dx . x2 - 1 x2 - 1 +3 x2 - 1 + 4 x2 - 1 -3 x2 - 1 - 4 x2 - 1 - 4 10.0 points x2 - 1 +C x2 - 1 + C x2 - 1+C x2 - 1 + C x2 - 1 + C Determine the integral I = x2 + sin-1 2 4-x x - sin-1 2. I = 4 - x2 x + sin-1 3. I = 2 4-x 1. I = 4. I = 5. I = 6. I = 2x x +C - sin-1 4 4 - x2 2x - sin-1 2 4 4-x x2 +C Which one of the following functions is an antiderivative of f when f (x) = x2 1 ? - 2x+ 2 x2 2x2 + sin-1 +C 4 4 - x2 jth734 Homework 7 Odell (58340) 1. F (x) = - 2 (x - 1) 2 - 2 x + 2)2 (x 3. - 4. 5. 2 x-2 2 2. F (x) = tan-1 (x - 1) 3. F (x) = ln x-2 x+1 1 x-2 3 x-2 4. F (x) = sin-1 (x - 1) 5. F (x) = ln(x2 - 2 x + 2) 006 10.0 points 6. - 1 x-2 008 10.0 points Find the unique function y satisfying the equations dy 3 = , dx (x - 3)(8 - x) 1. y = 2. y = 3. y = x-3 3 ln + ln 4 5 8-x y(4) = 0. Rewrite the expression f (x) = x2 (x - 3) 3x - 2 using partial fractions. 1. f (x) = - 2. f (x) = - 3. f (x) = 4. f (x) = 5. f (x) = 7 2 + 2 x x-3 7 2 7 + 2+ 9x 3x 9(x - 3) 8-x 3 - ln 4 ln 5 x-3 x-3 1 + ln 4 ln 5 8-x 8-x - ln 4 x-3 4. y = 3 ln 5. y = 3 ln 2 7 - 2 x x-3 2 7 7 - 2- 3x 9x 9(x - 3) 7 2 7 - 2+ x 3x 9(x - 3) 007 10.0 points x-3 + ln 4 8-x 10.0 points 009 Evaluate the integral 1 I = 0 4x dx . (x + 1)(x2 + 1) In the partial fractions decomposition of the expression f (x) = x3 - 2x + 5 , x2 - x - 2 2 2. I = ln 8 - 2 1. I = ln 2 + 3. I = 2 ln 2 + 2 4. I = 2 ln 8 - 2 5. I = 2 - ln 2 2 find the term having denominator x - 2. 1. 2 x-2 3 x-2 2. - jth734 Homework 7 Odell (58340) 6. I = - ln 2 2 010 10.0 points 1. I = 4 2. I = 2 3. I = 4 4. I = 1 5. I = 6. I = 2 013 10.0 points Evaluate the integral /2 3 I = /3 8 sin x dx . 1 + 4 cos2 x Evaluate the definite integral 4 x I = dx . 1 x - 16 1. I = 4 ln 9 -2 5 2. I = 2 - 4 ln 3 3. I = 1 - 4 ln 3 4. I = 2 - 4 ln 9 5 5. I = 4 ln 3 - 1 6. I = 4 ln 9 -1 5 10.0 points Evaluate the definite integral 1 011 I = 0 (4 + x)-1/2 dx . Evaluate the definite integral ln 2 I = 0 ex 5 dx . +3 1. I = 2. I = 1 5-2 4 1. I = 3 8 ln 5 5 2. I = 5 ln 2 3. I = 5 8 ln 3 5 1 5-1 4 3. I = 2 5 - 1 4. I = 5. I = 5-2 8 4. I = 5 ln 5 5. I = 5 ln 2 3 1 5-1 2 6. I = 2 5 - 2 014 10.0 points 3 6. I = ln 2 5 012 10.0 points Evaluate the integral /4 I = 0 sec2 x {2 - 3 sin x} dx . jth734 Homework 7 Odell (58340) 1. I = 5 + 3 2 2. I = 5 + 3. I = 4. I = 5. I = 6. I = 3 2 2 3 2 -1 - 2 3 -1 + 2 2 5-3 2 -1 - 3 2 015 10.0 points Find e9x dx . 81 + e18x 1 9x 1 +C arctan e 81 9 1 2. arcsec e9x + e9x + C 9 1. 3. None of these. 4. arcsin e9x + C 1 arcsin e9x + C 9 1 6. +C 9 + e9x 5. 018 +C +C +C 10.0 points 2. I = 4(4 - ) 3. I = 4(2 + ) 4. I = 2( - 2) 5. I = 4( - 2) 6. I = 2(4 + ) 017 10.0 points 4 Determine the indefinite integral I= 1 dx . 13 - 4x + x2 x-3 2 x-2 3 x+3 2 x+2 3 x+2 3 x-3 2 x-2 3 x+3 2 +C +C +C +C +C 1 1. I = tan-1 3 2. I = 1 tan-1 3 3. I = tan-1 4. I = tan-1 5. I = sin-1 6. I = 7. I = 1 -1 sin 3 1 -1 sin 3 Determine the integral I = 4x ln (2 + x) dx . 8. I = sin-1 016 1. I = 2(x2 - 4) ln (2 + x) + 4x - x2 + C 2. I = 2(x2 - 4) ln (2 + x) - 4x + x2 + C 3. I = 4. I = 1 1 2 (x - 4) ln (2 + x) - x - x2 + C 2 4 1 2 1 (x - 4) ln (2 + x) + x - x2 + C 2 4 10.0 points Evaluate the integral ln 2 I = 0 4 ex - 1 dx. 1. I = 2(4 - ) jth734 Homework 7 Odell (58340) 1 5. I = (x2 - 4) ln (2 + x) + 2x + x2 + C 2 1 6. I = (x2 - 4) ln (2 + x) + 2x - x2 + C 2 019 10.0 points 5 Determine the integral I = 2 sin-1 x dx . x 2 +C 1-x 1. I = 2x sin-1 x - 2 +C 2. I = 2 x sin-1 x + 1-x 3. I = 4 x sin-1 x - 4 1 - x + C 4. I = 4 x sin-1 x + 4 1 - x + C 5. I = 2x sin-1 x + 6. I = 4x sin-1 x + 2 +C 1-x 1-x+C ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online