7.2 Notes.pdf

# 7.2 Notes.pdf - l ”\“Q’V:2 W‘s Nomi 3(m a M tag...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: l ”\“Q’V {:2 W‘s Nomi 3 (m a M tag, halls it Q at; K 7.2 — Trigonometric Integrals t Tri Identities You Must Kno / “J“ " WW“ "““'““""""””'“;m“°”’"‘i DANA [Ziwtﬁf‘s \lrrermYTqZZ—_Ti._/T,”A 1 w T srn e + cos 9 =1 srn29 = Ell—c0526) c0529 = §(l+cos?3lj i CA 3 b.0836” 1 a 3M 9) ‘3 \~ LogLQ’ » it but? 33 :3- \ wﬁgwf‘tzt 1% “Jr waders 29%,.” “Airgun Exam Ie :7 g A: ( \ + COS %X\(}x‘/\ : J” g \ “t“ (.335 <ijle l ~IC0524X dx : L w x3 r, LVT CT L Powers of Sines and Cosines - Odds These are of the form Isinpu cosqu du where at least one of the two numbers p and q is an odd positive integer. The other may be any real number. o If p is a positive odd integer, factor out sin u. Then write the rest of the integrand in terms of cos u by using the identitysinzu = l-COS2U. Then expand. The resulting integrals will all be of the form Ivndv where v = cos u and x dv = -sin u du. (9‘ If q is a positive odd integer, factor out cos u. Then write the rest of the integrand in terms of sin u by using the identitycoszu = l—sin2u. Then expand. The resulgng integrals will all be of the form Ivndv where v = sin u and . K \ ' dv=cosudu. q) ’1 MAX: 9091 Log X \ v s L Examples 3 \ LUS K Q\v 3 \r\ y l. Isrn xcos xdx :SE ”\(Q X MEX Q \T' Sal X\ (xx ‘ : Ssml’x msx (XX “' E 5 ﬁx X W" ’L MK A: c5\,.\X (kw: L03 X 67a Page24 DUWQP (I? Slat). \3 0M» \NQ WI” UH WK :3ij “\1 L05 >4 3 WK 2. Isin5xcoszxdx :(L' 0?:y\1‘ L091 3g CJ‘W‘X “"‘ mu); “5&1 (05 K 3‘”\‘>4 (XX Ix: 93% {Q “A: UL QC”) CMZVSTTQU HR‘T — ‘\r =8 \i‘ in 5:45“? dd“ *3 ”(W ¥:'SK\IZ- LUIU‘ *lrxlfi’ik‘l :VKBg 233) :TUJFL’ Powers of Sines and Cosines— Evens These ore of The form Isinpu cosqu du where boTh p and q are non-negoTive even inTegers. In problems of This Type, we will use The following idenTiTies: sinze = %(l— c0529) and c0529 = —2]—( l+cos2e). m, . mmnwmwmc-mmwwlmm“ “MW“, ’l COS :‘l-l L05 “X. // USXTg‘ 3 ‘3 Inn-om rpm “WI van" By subsTiTuTing These Two idenTiTies and using olgebroic monipuloTions, we oTTempT To rewriTe The inTegrol in 0 form To which we con apply knowrl inTegroTi formulas. \NL \N\\\ “59 \&\§Lr\\\§\ Swlﬁ) {iii gig whéilupk W: FLU m5 5)ka ”“de 4.5;“ on i luau TIA. u: m Morino Page 25 WAX; Angle inaliliqé‘gl \ 3\r\ 2kz’lg \ruyblx) QUE—23¢ ”L’ZKH \(032.5{» Eight 2.]sioncosxdx :' 8‘1 R\ L031 ‘X\(\1\K\ SLOSZXX 3% \«l\ :: §Q\\Laslylk\ HWJXNM< WM 03:4 :Jakg K\ _, L03 2%) (pk Appw‘ 31 (A \t who‘ll Aiﬂ (WWW \JSK M“ \M’AVH L05 ‘QZLQ (H noel?) WNW 9 1K “ —Lgo\xvlg Zm-Hasclxl (M \A L ¢K§\3§ “(MGM :glm lag-DEM X OS lﬁ‘ll” (win X {i vi MLUSMQB‘: 4 % <6 W) ﬂak :imﬁ Vl3\r\\l\+ ln’te rals wi’rh Tan enl Colon enl Secan’t and Cosecan’r These inlegrols are attacked using the following fools: . Ilonxdx= Iﬂdx — -ln|cosxl+C cosx o J‘co’rxdx = I C.OSX dx = lnlsinx| + C Sinx . J'secz’xdx =lonx+C . Jcsczxdx = -co’rx+C . Isecx’ronxdx = secx + C . Icscxco’rxdx = -cscx + C Recall: sinze + c0526 :1 Divide by sinze: l+ c0129 = CSC29 Divide by c0529: lonQG +l = secze secx + lonx o Isecxdx = Isecx —-— secx + Tonx )dx = lnlsecx + lonxl + C cscx + co’rx . J-cscxdx = J‘cscx cscx + colx )dx = -lnlcscx + colxl + C Morino Page 26 mung—NV... Powers of TangenT, CoTangenT, SecanT and CosecanT - Evens These are of The form ITanpu secqu du where q is a posiTive even inTeger. We facTor ouTsec2U. Then wriTe The resT of The inTegrand in Terms of Tan u by using The idenTiTysec2u = T+Tan2u. If necessary, expand. The resuITing inTegraIs will all be of The form Iv”dv where v = Tan u and dv =seczu dU. Examples S‘QAZK +0021 akx : 840‘“? XRSLLZ'X‘V) ()V i. JTan xdx w _, EMA M m MW “MEX f» US: ATO\"\K 5‘“: SQL 7K6“ VQLK \ T _ M” .Yuv-wa—w u mun-M a‘.w..w ww—m,-mm~.Wn-WM, MW NW N...” ZJTanxsecxdxM\$\\u¥ ‘YKL \3 (O‘TSM‘ 0 (Mn (Li/0M (DWTU) WL Wm ;6\L‘Hr* bad S‘chL‘ ighﬁx Sum Eu >4 (TX :<+0m\( “LXQTT‘M EA 394 :Eqknx m; x «M T 33mm >4 3% KW \LQ,‘\ \k: ATX\BL Oth— 39 XJVX Marina Page 27 Powers of Tangents and Secants — Odds These are of the form Itonpu secqu duwhere p is 0 positive odd integer and q is 0 positive integer. . Begin by toctoring out sec u ton u. Then write the rest of the integrand in terms of sec u by using the identityton2u = seczu-l. 0 You mag 8&0 find cotzu = csczu-l useful for some of these problems. Examples \\/ » . . l. J‘sec3xtonx\dx :1 g S QVQQVQS [L K, "'"i'li‘xﬁﬁl ) £34 m: Sic/)4 M: Suﬁ AMNX (ix , r' , 3 “Wmnmwummmxmum-«me “my.“ arm—1:. oil 2- liog’sxsecaxdx : 3 40.:qu Eulx K Arum 34 SM X (l K i 3 S KsmC'Seﬁ'UM/Qxél K‘th 3 39" M\ . :' Bﬁmé‘xvlseg 34 H Siéxj\ttox 3%“ W 93% WW swam ~1 X315 x Relax w; 330 “V X surly Gimme/weld Liz} w: SILL. >4 3%: 3 u. 5a.- "karma (Mk : 3W M a 1qu CM «iﬁﬁ M. Merino Page 28 Powers of Tangents These are of the form Itonpu duwhere p is an integer and p > i. In problems of this type, we will repeatedly use the trigonometric identity: tonzu = secZU-l until we obtain either Itonu dU orIsec2u du. Example l. Iton5xdx :SAQAB K ‘td‘rg X CAVX :SAMXKSMV\ AM i. :Elrotn’sé ‘QLX AX V SAGA Xi!>4 \/\_~~~ ,‘AAAMX :S\(AHHKSQLXA\K \S Aonx“)i0\'\ X \AX — EARN? X 3% QXAXWSAANX\SMZ X W (AX M SAWQ X ECU. lXAX SAAoXSQszAX—kgiiﬁ X AX L13" A :‘ ”WW AW?“ 5U, (W Morino Page 29 ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern