Differential Equations Practice.pdf

Differential Equations Practice.pdf - Calculus Name ID 1 x...

This preview shows page 1 out of 4 pages.

Unformatted text preview: Calculus Name___________________________________ ID: 1 ©x D2x0n1l7d iKiu\t_ah uSEowfzt`w[aJrgej xLJLeCR.r ^ SA_lClF SrxiagqhltesT crLeUsSenr]vSeodd. Practice - Differential Equations Date________________ Period____ Find the general solution of each differential equation. 1) dy 1 =dx sin y 2) dy x- y = 2e dx 3) dy x = 2 dx y 4) dy 1 = dx sec 2 y 5) dy 2x 2 = 2 dx y 6) dy 2x = dx e 2 y For each problem, find the particular solution of the differential equation that satisfies the initial condition. 7) dy 2 = 5xy 2 , y(2) = dx 21 dy x 9) = 2 , y(-1) = dx y 8) 3 20 2 dy = 5x dx y, y(0) = 1 x dy 2e 10) = 2 , y(-2) = dx y 3 2e 3 + 6e e Worksheet by Kuta Software LLC -1- ©d y2t0]1`7[ IKkuytaaL `SJoZfAtowTamrUex cL`LwCC.p r bAFl\lR trLiOgkhSt[sM MrTeDsjezrqvUeodz.N h vMLayddeD EwUiStxhG mIVnifRiZnhiztMe] GCkaelIcBuKlJuosh. 11) dy x- y = 4e , y(1) = ln (4e + 2) dx 12) dy 1 = , y(-1) = 0 dx sec 2 y Worksheet by Kuta Software LLC -2- ©` v2v0j1Q7D KKtuotjam rSMomfutZwia[rzep kLMLDCR.G r RAtltl] `rHilgnhbtssj trWe[sSeArnvjejdX.B ] NMXajd[e_ rwCibtKhN XIBn^foi_nFixtSeE qCpamlEc\uWlgu`sZ. Calculus Name___________________________________ ID: 1 ©I D2J0Q1D7z kKEuhtXaG kSJoafKtCwdavrQer cLCLICi.[ P [ADlklC nrDioguhitqsa VrSeWsHearmvDead^. Practice - Differential Equations Date________________ Period____ Find the general solution of each differential equation. 1) dy 1 =dx sin y 2) y = ln (2e + C) y = cos -1 ( x + C) 3) 5) x dy x = 2 dx y y= 3 4) 3 dy 1 = dx sec 2 y y = tan -1 ( x + C) 3x 2 +C 2 dy 2x 2 = 2 dx y y= dy x- y = 2e dx 6) dy 2x = dx e 2 y ln (2x + C) y= 2 2x 3 + C 2 For each problem, find the particular solution of the differential equation that satisfies the initial condition. 7) dy 2 = 5xy 2 , y(2) = dx 21 y=- 2 2 5x + 1 dy x 9) = 2 , y(-1) = dx y y= 3 8) dy = 5x dx y= ( 5x 2 +1 4 3 20 2 y, y(0) = 1 ) x 2 dy 2e 10) = 2 , y(-2) = dx y 3 3x 2 +1 2 y= 3 2e 3 + 6e e x 6e + 2 Worksheet by Kuta Software LLC -1- ©M \2b0L1V7y iKZuOtVaM tSKo]fAtew`axrkes `LeL[Cp.B h bASlMlJ CrZidg\hUtJs^ MryehseexrRvYewd^.e I fMKaydRez hwxiOtShA zIynMfqi[nSiYtNeD jCCaBlycKurlLuisA. 11) dy x- y = 4e , y(1) = ln (4e + 2) dx 12) y = ln (4e + 2) x dy 1 = , y(-1) = 0 dx sec 2 y y = tan -1 ( x + 1) Worksheet by Kuta Software LLC -2- ©o p2s0b1S7v gKbuntlaO jSRohf\txw]amrhed iLpLXCk.y M rAvlFlC Er^iRgShStuse briessBeIrxvCerd^.x i iMtakdkeq Xw\iot[hB VIBnZfniln_iqtFeV pC`aDlRc\ugliuHsm. ...
View Full Document

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern