M
HW05-solutions.pdf

# HW05-solutions.pdf - young(toy68 HW05 villafuerte...

• Homework Help
• 11

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: young (toy68) – HW05 – villafuerte altu – (53615) This print-out should have 21 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 002 1 10.0 points The shaded region in 10.0 points y Evaluate the integral I = π/2 Z x cos3 x dx . 0 π 2 1. I = 2 correct 3 2. I = 5 6 3. I = 1 6 π 3π 2 is bounded by the graph of f (x) = 2 sin3 (x) 4. I = 1 5. I = on [0, 3π/2] and the the x-axis. Find the area of this region. 1 3 1. area = 4π Explanation: Since cos2 x = 1 − sin2 x , we see that Z I = π/2 0 (1 − sin2 x) cos x dx . This suggests using the substitution u = sin x. For then du = cos x dx, while x = 0 x = =⇒ π 2 =⇒ u = 0, 2. area = 6π 3. area = 3 4. area = 6 5. area = 4 correct 6. area = 3π Explanation: The area of the shaded region is given by u = 1. I = In this case, I = Z 0 1 2 (1 − u ) du . Thus I = 1 u − u3 3 i1 0 = 2 . 3 3π/2 0 |2 sin3 (x)| dx which as the graph shows can in turn be written as Z π Z 3π/2 3 I = 2 sin (x) dx − 2 sin3 (x) dx . 0 h Z Since π sin2 (x) = 1 − cos2 (x) , young (toy68) – HW05 – villafuerte altu – (53615) we thus see that n Z π Z 3π/2 o I = − 2 sin(x)(1−cos2 (x)) dx . π 0 To evaluate these integrals, set u = cos(x). For then du = − sin(x) dx , 4. I = −1 5. I = − 3 2 Explanation: After division cos x − 2 sin x cos3 x in which case Z π 2 sin(x)(1 − cos2 (x)) dx = sec2 x − 2 tan x sec2 x 0 = −2 −1 Z 1 (1 − u2 ) du = 2 1 = 2 u − u3 3 while Z 3π/2 π h 2 i1 Z −1 = −1 = (1 − 2 tan x) sec2 x . 1 (1 − u2 ) du Thus 8 , 3 I = Z π/4 0 (1 − 2 tan x) sec2 x dx . Let u = tan x ; then 2 sin(x)(1 − cos2 (x)) dx = −2 Z 0 −1 (1 − u2 ) du du = sec2 x dx so I = Z 1 0 4 1 3 i0 = − . = −2 u − u 3 3 −1 h Consequently,  1 (1 − 2 u) du = u − u2 0 . Consequently, the shaded region has I = 0 . area = 4 . keywords: 003 10.0 points Evaluate the definite integral I = Z 0 1. I = − π/4 cos x − 2 sin x dx . cos3 x 1 2 2. I = −2 3. I = 0 correct 004 10.0 points Evaluate the indefinite integral Z I = 2 cos4 2t dt . 1. I = 2. I = 3. I = 4. I = 5. I =  1 1 3t+sin 4t+ sin 8t +C correct 4 8  1 1 3t + cos 4t + cos 8t + C 4 8  1 1 3t − sin 4t + sin 8t + C 4 8  1 1 3t + sin 4t − sin 8t + C 4 8   1 1 3t + cos 4t − cos 8t + C 4 8 young (toy68) – HW05 – villafuerte altu – (53615)  1 1 3t − cos 4t + cos 8t + C 4 8 6. I = Explanation: Since  1 1 + cos 2θ , cos θ = 2 3 √ 3. I = 4 2 4. I = 4 √ 5. I = 4 6 2 the integrand can be rewritten as 2 1 2 cos 2t = 1 + cos 4t 2  1 1 + 2 cos 4t + cos2 4t . = 2 6. I = 2 Explanation: By a double angle formula for cos(2x), 4 But in turn, this last expression can be rewritten as o 1 1n 1 + 2 cos 4t + 1 + cos 8t . 2 2 Thus 2 cos4 2t = and so 1 I = 2  13 1 + 2 cos 4t + cos 8t , 2 2 2 Z   3 1 + 2 cos 4t + cos 8t dt . 2 2 Consequently, I =  1 1 3t + sin 4t + sin 8t + C 4 8 with C an arbitrary constant. 005 10.0 points Evaluate the integral I = 2 Z 0 2π/3 p 1 + cos(θ) dθ . Hint: use a double angle formula to express 1 + cos(θ) in terms of cos2 (θ/2). √ 1. I = 2 6 correct √ 2. I = 2 2 cos(2x) = 2 cos2 (x) − 1 , so, taking x = θ/2, we see that s     p √ θ θ = 2 cos 1 + cos(θ) = 2 cos2 2 2 when cos(θ/2) ≥ 0, hence for 0 ≤ θ ≤ π. Thus  i   2π/3 √ Z 2π/3 √ h θ θ I = 2 2 dθ = 4 2 sin cos 2 2 0 0 Consequently, √ I = 2 6 . keywords: definite integral, double angle formula 006 10.0 points Find the value of Z π/4 I= 2 tan4 x dx . 0 1. I = 1 (3π − 2) 4 2. I = 1 (3π − 2) 6 3. I = 1 (3π − 8) 4 4. I = 1 (3π − 4) 6 5. I = 1 (3π − 8) correct 6 young (toy68) – HW05 – villafuerte altu – (53615) 1 (3π − 4) 4 6. I = 1 5 5 3. I = x2 + x sin(2x) + cos(2x) + C 2 2 4 correct Explanation: Since tan2 x = sec2 x − 1 , we see that tan4 x = tan2 x(sec2 x − 1) 2 2 4. I = 1 5 2 1 x + x sin(2x) + cos(2x) + C 2 2 4 5. I = 1 5 2 1 x − x cos(2x) − sin(2x) + C 2 2 4 Explanation: Since 2 = tan x sec x − tan x = tan2 x sec2 x − (sec2 x − 1) . Thus 2 2 tan x = (tan x − 1) sec x + 1 . In this case, I=2 cos2 (x) = 1 (1 + cos(2x)) 2 sin2 (x) = 1 (1 − cos(2x)) , 2 and 4 Z 0 π/4 4 we see that (tan2 x − 1) sec2 x dx + Z π/4 2 dx . Z 1 x (6 (1 + cos(2x)) I= 2 −4 (1 − cos(2x))) dx Z Z = x dx + 5 x cos(2x) dx 0 To evaluate the first of these integrals, set u = tan x. Then Z 1 i1 h1 4 2 (u2 − 1) du = 2 u3 − u = − . 3 3 0 0 On the other hand Z π/4 h iπ/4 1 = π. 2 dx = 2x 2 0 0 Consequently, I = 007 1 (3π − 8) . 6 10.0 points Determine the indefinite integral Z I = x (6 cos2 (x) − 4 sin2 (x)) dx . 1. I = 5 1 2 5 x − x cos(2x) − sin(2x) + C 2 2 4 2. I = 5 2 1 5 x − x sin(2x) + cos(2x) + C 2 2 4 1 = x2 + 5 2 Z x cos(2x) dx . But after integration by parts, Z 1 x cos(2x) dx = x sin(2x) 2 Z 1 sin(2x) dx − 2 1 1 = x sin(2x) + cos(2x) + C . 2 4 Consequently, I = 1 2 5 5 x + x sin(2x) + cos(2x) + C . 2 2 4 008 10.0 points The shaded region in young (toy68) – HW05 – villafuerte altu – (53615) y 5 On the other hand, sin2 (x) = 1 (1 − cos(2x)) . 2 Thus π 2 x π π/2  1 1 − cos(2x) + 2 sin(x) dx V = π 2 2 0 h1 iπ/2 1 = π x − sin(2x) − 2 cos(x) . 2 4 0 Z  Consequently, (not drawn to scale) is the one below the graph of f (x) = sin(x) on the interval [0, π/2]. Find the volume of the 3D solid obtained by rotating this region about the dashed line y = −1. 1. Volume = 1 1 π − cu.units 2 2 2. Volume = 1 2 π + 2π cu.units 2 1 3. Volume = π 2 + 2π cu.units correct 4 1 1 4. Volume = π − cu.units 4 2 Volume = keywords: 009 I = 1. I = 2. I = 6. Volume = 1 2 1 π − π cu.units 2 2 3. I = = π Z π/2  f (x)2 + 2f (x) dx 0 =π Z π/2 0  sin2 (x) + 2 sin(x) dx . Z 0 1 π + 2 cu.units 4 0 10.0 points Evaluate the integral 5. Volume = Explanation: The 3D solid obtained by rotating the shaded region about the line y = −1 is given by the integral Z π/2  I = π (f (x) + 1)2 − (1)2 dx 1 2 π + 2π cu.units . 4 4. I = 5. I = 6. I = π/3 sec(x) tan(x) dx . 3 + sec(x)   5 correct ln 4   5 − ln 6   5 − ln 4   4 ln 3   5 ln 6   4 − ln 3 Explanation: Since d (sec(x)) = sec(x) tan(x) , dx young (toy68) – HW05 – villafuerte altu – (53615) use of the substitution u = 3 + sec(x) and deal with I1 , I2 separately. For I1 , set u = cos(x). Then du = − sin(x) dx is suggested. For then du = sec(x) tan(x)dx , while x = 0 =⇒ π 3 x = =⇒ I = 5 4 Consequently, while u = 4, x = 0 π x = 2 u = 5. Thus Z h i5 1 du = ln(u) . u 4 10.0 points Evaluate the integral Z π/2 I = sin(x) (f ′ (cos(x)) − 2 sin(x)) dx =⇒ =⇒ u = 1, u = 0. Thus ′ f (u) du = 1 h = 0 Z I1 = −   5 I = ln . 4 010 6 Z 1 f ′ (u) du 0 i1 f (u) 0 = (f (1) − f (0)) = 3. On the other hand, sin2 (x) = so  1 1 − cos(2x) , 2 0 when f (0) = 2 and f (1) = 5. I2 = Z π/2 0 1. I = 3 − π = 2. I = 5 + π   1 − cos(2x) dx h x− iπ/2 1 1 = π. sin(2x) 0 2 2 Consequently, 3. I = 4 + π 1 I = 3− π . 2 1 4. I = 5 − π 2 1 5. I = 4 + π 2 011 Find the value of the integral 1 6. I = 3 − π correct 2 Explanation: To evaluate the integral we write I as the sum Z π/2 I = I1 + I2 = sin(x) f ′ (cos(x)) dx 0 −2 Z 0 10.0 points π/2 sin2 (x) dx I = Z 2 1. I = 3 2. I = 1 π 3 3. I = 3π 5 1 dx . 9 + (x − 2)2 young (toy68) – HW05 – villafuerte altu – (53615) 4. I = 1 6 1 π correct 5. I = 12 6. I = 1 π 6 7 4. I = Z sin5 (θ) sec6 (θ) dθ 5. I = Z sin5 (θ) dθ correct Explanation: Set x = sin(θ). Then Explanation: Set 3 tan u = x − 2. Then 9 + (x − 2)2 = 9 + (3 tan u)2 2 In this case 3 sec2 u du = dx . Consequently, Also x = 2 =⇒ u = 0, x = 5 =⇒ u = and I = π . 4 In this case Z Z π/4 1 π/4 3 sec2 u I = du = du. 9 sec2 u 3 0 0 1 h iπ/4 1 u π . = 3 12 0 10.0 points To which of the following does the integral Z x5 √ dx I = 1 − x2 reduce after an appropriate trig substitution? Z 1. I = sec5 (θ) sin6 (θ) dθ 2. I = tan(θ) sec5 (θ) dθ 3. I = Z sin5 (θ) sec5 (θ) dθ Z 013 sin5 (θ) dθ . 10.0 points Evaluate the integral I = Consequently, Z sin5 (θ) cos(θ) dθ . cos(θ) Z I = while 012 1 − sin2 (θ) = cos(θ) . 2 = 9(1 + tan u) = 9 sec u , I = q dx = cos(θ) dθ, Z 2 0 √ 1. I = 1 2 2. I = 1 π correct 2 3. I = 3 4 4. I = 3 π 4 3 dx . 16 − x2 5. I = π 6. I = 1 Explanation: Set x = 4 sin u; then dx = 4 cos u du young (toy68) – HW05 – villafuerte altu – (53615) 8 and 16 − x2 = 16(1 − sin2 u) = 8 cos2 u , while x = 0 x = 2 In this case Z I = 3 π/6 0 =⇒ u = 0, =⇒ π u = . 6 cos u du = 3 cos u Z 015 10.0 points Evaluate the integral Z I = 2 (4 + 0 p 4 − x2 ) dx . 1. I = 4 + π π/6 du . 0 2. I = 8 + 2π Consequently I = 1 π . 2 3. I = 4 − 2π 4. I = 8 + π correct 014 10.0 points Determine the integral Z 3t √ dt . I = 1 − t4  1. I = 3 tan−1 t2 + C  3 tan−1 t2 + C 2 3p 3. I = 1 − t4 + C 2 2. I = 4. I = 5. I = 8 − 2π 6. I = 4 − π Explanation: Since Z 2 Z I= 4 dx + 0 3 +C 1 − t4  6. I = 3 sin−1 t2 + C Explanation: Set t2 = sin(u). Then p 0 4 − x2 dx = I1 + I2 , we evaluate the two integrals separately. Now 3 −1 2  sin t + C correct 2 5. I = √ 2 I1 = 2 Z 4 dx = 8 . 0 On the other hand, to evaluate the second integral we set x = 2 sin(u). For then dx = 2 cos(u) du , while 4 − x2 = 4 cos2 (u) , x = 0 =⇒ u = 0, x = 2 =⇒ u = 2t dt = cos(u) du , in which case 1 I = 2 Z 3 cos(u) 3 du = u + C cos(u) 2 with C an arbitrary constant. Consequently, 3 I = sin−1 (t2 ) + C . 2 π . 2 In this case I2 = 4 Z π/2 cos2 (u) du 0 = 2 Z 0 π/2 (1 + cos(2u)) du . young (toy68) – HW05 – villafuerte altu – (53615) Thus h iπ/2 1 I2 = 2 u + sin(2u) = π. 0 2 Consequently, and so Z I= π/4 0 9 h 2 (sec θ − 1) dθ = tan θ − θ I = 1− . π 4 . 10.0 points Evaluate the integral Z 1 x2 I = dx . 2 3/2 0 (2 − x ) √ π 1. I = 2 3 + 3 π 2. I = 1 + 4 √ π 3. I = 2 3 − 3 √ π 4. I = 2 2 + 3 √ π 5. I = 2 − 4 π 6. I = 1 − correct 4 Explanation: √ Let x = 2 sin θ. Then √ dx = 2 cos θ dθ , 2 − x2 = 2 cos2 θ , while 0 Consequently, I = I1 + I2 = 8 + π . 016 iπ/4 x = 0 =⇒ θ = 0, x = 1 =⇒ θ = π . 4 In this case, Z π/4 √ 2 2 sin2 θ cos θ √ I = dθ 2 2 cos3 θ 0 Z π/4 Z π/4 sin2 θ dθ = tan2 θ dθ . = 2θ cos 0 0 Now tan2 θ = sec2 θ − 1 , d tan θ = sec2 θ , dθ 017 10.0 points Evaluate the integral I = 1 Z √ 0 1. I = √ 1 x2 +1 dx . 2−1 √ 2. I = ln( 2 − 1 ) 3. I = √ 2 (1 + 4. I = ln(1 + 5. I = √ 6. I = √ √ √ 2) 2 ) correct √ 2( 2−1) 2 ln(1 + √ 2) Explanation: Set x = tan(u) , then dx = sec2 (u) du , x2 + 1 = sec2 (u) , while x = 0 =⇒ u = 0, x = 1 =⇒ u = π . 4 In this case Z π/4 Z π/4 sec2 (u) I = du = sec(u) du . sec(u) 0 0 On the other hand, Z sec(u) du = ln (| sec(u) + tan(u)|) + C . young (toy68) – HW05 – villafuerte altu – (53615) Thus 10 On the other hand, by Pythagoras, I =  ln (| sec(u) + tan(u)|) π/4 . 0 Consequently, 018 √ 10.0 points x . x2 + 9 with C an arbitrary constant. Explanation: Set x = 3 tan θ. Then p dx = 3 sec2 θ dθ, x2 + 9 = 3 sec θ . In this case Z 2 sec2 θ I = dθ 3 tan θ sec θ Z sec θ 2 dθ = tan θ 3 019 10.0 points Evaluate the integral I = Z 1 (x2 0 2 dx . + 3)3/2 1. I = 2 2. I = 1 correct 3 3. I = 1 4. I = 1 2 5. I = 2 3 Explanation: √ Set x = 3 tan(u). Then dx = √ 3 sec2 (u) du , while Z csc θ dθ . But Z sin θ = √ =⇒ √ 2 x2 + 9 − 3 I = ln +C 3 x 2) . Determine the integral Z 2 √ dx . I = x x2 + 9 √ 2 x2 + 9 + 3 1. I = ln +C 3 x √ 3 x2 + 9 − 3 2. I = ln +C 2 x √ 2 x2 + 9 + x 3. I = ln +C 3 3 √ 3 x2 + 9 + x 4. I = ln +C 2 3 √ 3 x2 + 9 − x 5. I = ln +C 2 3 √ 2 x2 + 9 − 3 6. I = ln + C correct 3 x 2 3 x 3 Consequently, I = ln(1 + = tan θ = csc θ dθ = ln | csc θ − cot θ| + C . x = 0 =⇒ u = 0, x = 1 =⇒ u = π . 6 On the other hand, (x2 + 3)3/2 = 3(tan2 (u) + 1) √ = 3 3 sec3 (u) . 3/2 young (toy68) – HW05 – villafuerte altu – (53615) Thus 11 while I = 2 Z √ 3 sec2 (u) √ du 3 3 sec3 (u) π/6 0 2 = 3 Z π/6 cos(u) du = 0 iπ/6 2h . sin(u) 3 0 Consequently I = 1 . 3 x = 0 =⇒ x = 1 =⇒ In this case Z π/4 Z π/4 3 sec2 u I =1+ du = 1 + 3 du . sec2 u 0 0 Consequently, 3 I = 1+ π . 4 021 keywords: 020 10.0 points Evaluate the integral Z 1 2 x +4 I = dx . 2 0 1+x  π 1. I = 4 1 − 4 3 2. I = 1 + π correct 4 3 3. I = 1 − π 4 u = 0, π u = . 4 10.0 points Which one of the following functions is an antiderivative of f when 1 f (x) = 2 ? x − 4x+ 5 x − 5 1. F (x) = ln x + 2 2. F (x) = ln(x2 − 4 x + 5) 3. F (x) = − 5 (x − 2) − 4 x + 5)2 (x2 4. F (x) = sin−1 (x − 2) 5. F (x) = tan−1 (x − 2) correct Explanation: The indefinite integral Z Z I = f (x) dx = 4. I = 4(1 − π) 1 dx − 4x+ 5 consists of all antiderivatives of f . But by completing the square we see that 1 1 = x2 − 4 x + 5 (x2 − 4 x + 4) + 1  π 5. I = 4 1 + 4 6. I = 3 + 4π Explanation: Since x2 + 1 + 3 3 x2 + 4 = = 1 + , 1 + x2 1 + x2 1 + x2 the integral can be written as Z 1 Z 1 3  3 dx = 1+ dx . I = 1+ 2 1 + x2 0 1+x 0 In the last integral, set x = tan u. Then 2 dx = sec u du, = ThusZ I= x2 1 . (x − 2)2 + 1 1 dx = tan−1 (x − 2) + C . (x − 2)2 + 1 Consequently, only F (x) = tan−1 (x − 2) is an antiderivative of f , as can be checked by differentiating F . ...
View Full Document

• Fall '09
• GOGOLEV

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern