This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: METU — NCC LINEAR ALGEBRA
MIDTERM 2 Code 1 MAT 260 Last Name:
AcadYear! 2013312016 Name 3 Student No.:
Semester 2 Spring Department; E SGCthH:
Date 222.05.2016 Signature : Time ”940 5 QUESTIONS ON 5 PAGES
Duration 3 120 mm TOTAL 100 POINTS Show your work and justify all your answers! 1.(18pt3) Find the solution set to the nonhomogeneous linear system in R4. m+2y+72~3w=10
~—:c—y+z+7w=9 3x—y+2228
tail”5:10 l4?*3:lo
1 g ,«u
Kr?.“l"l1 3113 ~ 613‘1113
{+31 3 ., t 013 O “‘1 5‘ .1! {35 Rum
3
i a 1 "Stio ﬁ'aﬂ‘ { O 3 Hip—.23 Rmﬁf,
0139119 ~ 0139;131:1495“.
I
003131!!!” 001113
’1 O 0 "1:' x—&w=1
N 01 0 “‘1 Ii”; .7:> 3...?“3‘5
DO 1 1 '5 2+»: 3 50% ==l “W, 3:“; #5le =~ 51°in (an—1,0}
and g: (”Ln5‘, 3,0) is a smué ”aim. 1L0 nanA07 Sea 2 S‘pa«lHﬂMJU + (1,—533, 0)‘ 2.(9+15=24pt3) Let T : R2 m» 1R3, T(m,y) = (a: + y,:r m 31,32 — 2y) be a lin—
ear transformation. Fix the ordered bases E = {(21 = (1,0),02 = (0,1)},
13' u {m = (1,1)”;2 = (1, m1)} of R2 and F = {f1 = (1,0,0),f2 = (0,1,0),f3 = (0,0,1)},
F’ "—* {ul = (1, 1, 0),u2 = (1,0, 1),us = (0,1,1)} of 13.3, respectively. (21) Write down the matrix M f; (T) representing T relative to the standard bases. : ._ _ ,1_ 1
1 ‘1 (1)) Write the matrix M‘gKT) representing T relative to {E’,F’} USING BASE
CHANGE METHOD. Hint: ﬁnd the base change matrices P, Q so that M I 2' (T) = PM§(T)Q. .
P ' Q
n u
’ F’ I F E
MiCT) 1“ F' (1,5) ' mg (1’) ' m 11/11.)
H H N
Ill. “1.. VL 1 1 1 1 N ame: ID: 3. (15+3318pts) Let T : 793(1R) ~> IR“ be the linear transformation deﬁned as T(:v(w)) — Wm] p<w1dsc,p”(on. (11) Find L01 (T) Im(T) )and their dimensions d11n(k01(T)), dim(Im(T)). F1151“ ﬂak M [Girl43;! 4—13,): ‘+%x3)= (Qt—1a I+I+ 32134»? 10.3) Haw. MUGWT) TH C1,, “as:0 ‘10: +5???“ 0 TL Wham“wi— f’pc): 01‘4Q1X3*a(1:9x3)
.LlyLrs nan—(T): Speai 141 xi) =>6¢n5m67ﬂ24
Batu—c! an DIWJM garMA we. W 444.. mﬁmCTJ) :2 414:3 => mm): 1123 (b) Is T an isomorphism? N 0 ) mtﬂ % 4 O) 02..
1114193021) =— 9 #3 MM OK”). 4. (10+5=15pts) Let. W = {:L‘ + 39+ 2 + w = 0} C R", v = (1,0, 0,0). (a) Find the skew projection P in R4 onto W along the vector v.
m a w: ﬁzmmv) ,rzrss«,+.o}, é3/OJ0,¢*IJ
2w w «ml pw4' #1.: (wow. 7k F‘s/A444)
t. a [ﬂash for 12" and ’P[%~)=:£a,1.s££3 mam? NoL‘v M etlﬁ't)e1_=£t‘£l 233: £’£"£Lj 6,316.4:{14 (b) Compute P(1,l,i,1), {DI/1,4,1”): (“S/LU) 5.(10+15m:‘35pt3) (a) Let; T : 1R4 —+ IR", T(3;,'y, 2,111) = (z,y,w,3:) be a linear transforma
tion. 13 T a cyclic transformation? Justify your answer. Tm ~=anI~)G~IR". To. T534339”) 141V): (“03, 33%)) T3[v)c()t,z?,v):v_ So)
S r" AA“ Spm}V,T\r, 1%,...jc air53V, ho T‘vj £3, mi) MannaLe. 01 3‘34;ch M LT.
Hm; To M+ agebc. (b) Let T : ’PaUR) ——> 793(R), T(p(:r)) «1 p’(:2:) — p"(:c) be a linear transformation. (1) Show that T is nilpotent of index 4. (ii) Find a. polynomial p E PAR) such that F = {p,T(p),T2(p),T3(p)} is a, basis for
733(R). (iii) Calculate the matrix M {1 (T) relative to the basis you ﬁnd in part (ii). m .3 T3450 and P: (x3,3x3£x,6x»/a,{) 3 .3 a law!) {I [Pa/K) SMM
L“ O 0 O O
I“); (T) 1: l O O O
0 1 0 O
o O 1 o ...
View
Full Document
 Winter '10
 uguz
 Linear Algebra, Linear map, linear transformation, base change matrices

Click to edit the document details