This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: University of Ottawa
Dept. of Mathematics and Statistics
Calculus III for Engineers
MAT 2322 3x  SpringSummer 2015
Midterm I  V.2
Professor: Abdelkrim El basraoui
Duration: 80 minutes. Name: ACQA—‘(m ID Number: Instructions: (Please read carefully.) o This exam has 8 pages and you have 80 minutes to complete it.
o This is a closed book exam. 0 The only calculators which are allowed are those approved by the faculty
of science such as Texas Instruments TI—30, TI—34, Casio fx260 and fx—300, scientiﬁc and non programmable.
o Read each question carefully before answering. 0 Questions 1 to 3 are multiple choice questions. These questions are worth 2 points
each and no partial marks are possible. Please record your answers in the cor—
responding boxes in the grid below. 0 Questions 4 to 6 are long answer questions. Questions 4 and 6 are worth 6 marks
each, and question 5 is worth 7 marks, so organize your time accordingly. A correct
answer requires a full, clearlywritten and detailed solution. 0 Answer each question in the space provided, using backs of pages or the extra pages
at the end if necessary. 0 Do not unstaple the test. 0 Good luck!
Question Q.1 Q2 Q3 Q4 Q5 Q6 I Total ]
Maximum 2 2 2 6 7  6 25 Answer 3 E 6 X X X X Score 3’60 W964i {M 4,4353%. MAT 2322 3X  Midterm I 2
1. If f (11:, y) = 2x2 +3xy— 6y2, which of the following expressions corresponds to the tangent
plane to the graph of f at the point (1, 1, «1)? A. z = —1 B. z=7(a:—1)—9(y—1)—1 C. 2 = 7:1: — 9y — 1 D. z = (4x + 3y)(:1: — 1) + (3x —12y)(y — 1) — 1 E. z = 72"— 9} F. This function is not differentiable at the indicated point, so the tangent plane does not
exist. 2. If f (:17, y) = 62’32‘33’2, and 12' is the unit vector along {+31 which of the following corresponds
to the directional derivative D1; f (1, 2)? ~ . 2\/26“10;— riﬂe103'
_3\/§e10 . 0 . —8e‘1° —4\/26‘1° —26_10 swwow> MAT 2322 3X  Midterm I 3 3. If f (:13, y) = $2313 and R is the rectangular region deﬁned by 0 5 :1: S 1, 0 g y g 2, what
is the value of the double integral // f (M?
R A. 5/3
B. 4/3
C. 1
D. 2/3
E. 1/3
F. 0 MAT 2322 3X — Midterm I 4 4. Find and classify the critical points of the function f (3:, y) = 6“ (2:1:2 — y2). 6 CY\M $3" “56 \xawe VS: Xex(°z>¢1+um«‘bl)] ~10 6»
W V‘%: [Z 1 Q1") €$C1w1+VX*‘b7/) CO
{ ~17“? :0 .2 64 ”W 3" =0 2—2.?
=0 “Ease ‘LUMM; mtixccq} or} 3‘30 $476 9%“ “ca“ iuu+L¥X3° ’9
1Q... (a) &%\K+1\ :ﬁm g) {w w=~Z Wwvrtﬁw~%w,§‘:a2°(;mwm) . ‘QESE‘FEW “Hwy: mm :4? <0
b) {mo} {3 a MAAXL "99}, ~ “Mam: Mm) :Ye‘“>o b« h
Db 9.2.67 x3 4ka MAMA .’ MAT 2322 3X — Midterm I 5 5. Find the absolute maxima and minima of the function f (3:, y) = a: + 3/ on the region A= {(azy) 61R<2$2+y2 S9} 3 C»th (k MVM A £W1\ +0 )‘ £ﬂ;\ 4:0 % q&_© 84 MW mm \m UGBVCAQ ‘31 x o Euktwo. WQAMS m “WW \NVNMAM‘Y‘»: TN \OOMKNW I: QQ‘T)\ .11~.ub7'.,0(\ H1\\\°A\ . M \Nméowy \S uv'vﬁeé EXM N ““45 3 3914/4 5
rm 324%,)? ; bug's "C
M 2w)=3€b¢w 4}):va g“
.erCIXL
Tm 3m:\+5——~
\{W—XLL ,_/ ,2 7,
%QX\’O c» 33:; >~‘ (—2 aﬁﬂ’q’ﬁ %3 9° “”4
Mac}
<25 vzir— 3 i :3?
Q7“.
Aka (30.3 is mo¥w Ox? 96: ”Ci? 1’33 ywr’isffx.
9C3, 2
m Nuﬁcﬂ $3 58* c3
Cw m «kw. whmwm WED WV; 3J3)
ﬁnkis 94 30;):0 )4 a? z)“
b‘wu ”*5KGMOM b4 ’A 3E {;VMMS\%mEg‘3‘ MAT 2322 3X  Midterm I f V41? m
ﬁsba 70 (/3 $31" 3f“  {M cxéﬁwx ‘0‘} i
‘ / L Cl) —— i’S 9,2 «31%.
:‘Y": M“ 2’ wwﬂ’ﬂﬁ RCiL}:i’5 ) 1/ 7/ R
W‘QRMR/‘Ak *\a\' {2'3 \Smwxm $4 113%: ken/Moor Sit 6m 2531‘ ms «Rafts (BOWVQNi “6’3: *(ﬁMVOSmsm We, \mm §K1\O3ZE}£(3%IZEL)3EVZS
fQ'b‘e) )"'3 y :9“? ‘3f\:3 J2, MAT 2322 3X  Midterm I 5 ” Mg m Rmmmm We; ﬁx :q 2 ‘cér k
‘Qu Wﬁkwu’ wwwﬁl’i ‘ \Qq, \wwo: ERIE] ; A <13 :k[::]
(«:5 09‘ :‘ZMR LTWVLJVMX' A$b\‘ m2; s; MW 5“
«we, J\\Q,\MRN—>§\£ Gk WM mert MC W 9
“\IQ‘E’ & \xb\' \maci‘e— 3V0 C/WWJS ‘Ahsk $9 , MAT 2322 3X  Midterm I 5 6. Let R be the bounded region enclosed between the parabola y = :52 + 1, the parabola
y = —$2, and the lines a: = ~—1 and x = 2 in the my~plane. Sketch the region R then compute the double integral // my dA.
R .MJQ: éhquagaléﬁyeIﬂﬁ‘wghaw
VQ:lC~Cx\0\_\§oc\<V x 302» “my We 3w: Bil“ 7/
:: B ”(ye/(17410 A?“ $ «\ ...
View
Full Document
 Fall '14
 Calculus, Statistics, A Closed Book, 3X — Midterm

Click to edit the document details