{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

physics lab report - standing waves formed on the string...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 13: Simple Harmonic Motion and Standing Waves Catherine Vu 11/30/08 Robert Ehlert Thursdays 4-7pm
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Summary: Chapter 13’s lab deals with simple harmonic oscillations and standing waves.   While  studying simple harmonic motion, we investigated a pendulum with length L, mass m and  determined for what range of displacements the period remained constant.   We did so by  recording the period at different lengths, and then plotted T-squared versus L.  For the standing  waves experiment, we took observations of standing waves that occurred along a vibrating  string and of the sound resonance that occurred in the air.  These observations had a direct  correlation to quantities such as frequency and wavelength.  This relationship was important in  solving for the speed of vibrations along and string and sound through air.  For the Vibrating  String experiment, a string was fixed at both ends while an oscillator vibrated the string.  The 
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: standing waves formed on the string produced a pattern, leading to the deduction of a relationship between order of harmonic and frequency. The velocity of the wave was also determined, and from this, the frequency and tension. For the Speed of Sound in Air, a tuning fork was struck and held near the opening of a long marked cylinder with a tube extending from the bottom into a reservoir of water. As the longitudinal sound waves hit the water, the level was adjusted up and down to find the length for which a resonance occurs. Standing waves occur when the length L (distance from the top), is so that the reflected wave is a maximum when it reaches the top of the tube. The length of the tube was ¾ the n=2 wavelength. A relationship was found between the resonance and the length L....
View Full Document

{[ snackBarMessage ]}