Hw10ans - STAT 408 Spring 2009 Homework#10(due Friday April...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: STAT 408 Spring 2009 Homework #10 (due Friday, April 10, by 3:00 p.m.) 1. Let X and Y have the joint probability density function x+4 y f X, Y ( x, y ) = 0 a) Find f Y ( y ). 0 < y < x <1 otherwise x2 1 1 9 f Y ( y ) = ( x + 4 y ) dx = +4xy = +4 y - y 2, 2 y 2 2 y 1 0 < y < 1. b) Find f Y | X ( y | x ). f X ( x ) = ( x + 4 y ) dy = x y + 2 y 2 0 x ( )x 0 = 3 x 2, 0 < x < 1. f Y|X( y | x ) = x+4y , 3x2 0 < y < x, 0 < x < 1. f Y | X ( y | x ) is undefined for x < 0 or x > 1. c) Find E ( Y | X ). x+4y 1 xy2 4y3 x 11 x E( Y | X = x ) = y dy = + = , 0 < x < 1. 2 2 2 0 18 3 3x 3x 0 E ( Y | X = x ) is undefined for x < 0 or x > 1. E( Y | X ) = 11 X . 18 x d) Are X and Y independent? Justify your answer. The support of ( X, Y ) is not a rectangle. X and Y are NOT independent. OR f ( x, y ) f X ( x ) f Y ( y ). X and Y are NOT independent. e) Find Cov ( X, Y ). 1 E( X ) = 2 x 3 x dx = 0 1 3 . 4 E( X2) = 2 2 x 3 x dx = 0 3 . 5 11 X 11 3 11 ) = = . 18 18 4 24 E( Y ) = E[E(Y | X ) ] = E( E( X Y ) = E[E(X Y | X ) ] = E[ X E( Y | X ) ] = E( Cov ( X, Y ) = E ( X Y ) E ( X ) E ( Y ) = 11 X 2 11 3 11 ) = = . 18 18 5 30 11 3 11 11 - = . 30 4 24 480 2. a) b) 2 3 Let f ( x 1 , x 2 ) = 21 x1 x 2 , 0 < x 1 < x 2 < 1, zero elsewhere, be the joint pdf of X 1 and X 2 . Find the conditional mean and variance of X 1 , given X 2 = x 2 , 0 < x 2 < 1. Find the distribution of Y = E ( X 1 | X 2 ). That is, find the pdf of Y, f Y ( y ), or the cdf of Y, F Y ( y ). c) Determine E ( Y ) and Var ( Y ) and compare these to E ( X 1 ) and Var ( X 1 ), respectively. 3 f ( x 1 , x 2 ) = 21 x12 x 2 , 0 < x 1 < x 2 < 1. (a) 6 3 f 2 ( x 2 ) = 21 x12 x 2 dx1 = 7 x 2 , 0 x2 0 < x 2 < 1. 3 f 1 | 2 ( x 1 | x 2 ) = 3 x12 x 2 , 0 < x 1 < x 2 , 0 < x 2 < 1. x2 E( X1 | X2 = x2 ) = 0 2 3 x1 3 x1 x 2 dx1 = 3 x2 , 4 3 2 x2 , 5 0 < x 2 < 1. 2 E( X1 | X2 = x2 ) = x2 0 2 2 3 x1 3 x1 x 2 dx1 = 0 < x 2 < 1. 0 < x 2 < 1. Var ( X 1 | X 2 = x 2 ) = 3 2 9 3 2 2 x2 - x2 = x2 , 5 16 80 (b) Y = E( X1 | X2 ) = 3 X 2. 4 3 ( 0, 1 ) 0, 4 F2( x2) = 0 7 x2 1 x2 < 0 0 x2 < 1 1 x2 4 4 FY( y) = P ( Y y ) = P ( X2 y ) = y , 3 3 7 0<y< 3 . 4 4 fY( y) = 7 y 6, 3 7 0<y< 3 . 4 (c) 7 4 3 4 E ( Y ) = y 7 y 6 dy = 8 3 4 3 0 34 7 7 8 = 21 . 32 34 E( Y ) = 2 7 4 3 4 2 6 y 7 3 y dy = 9 3 4 0 7 441 7 - = . 16 1024 1024 7 7 9 = 7 . 16 Var ( Y ) = 3 f 1 ( x 1 ) = 21 x12 x 2 dx 2 = x12 1 - x14 , 4 x 1 1 21 ( ) 0 < x 1 < 1. 1 E( X1) = = 2 4 3 7 x1 4 x1 1 - x1 dx1 = 4 x1 - x1 dx1 0 0 21 ( ) 1 21 ( ) 21 21 21 - = . 16 32 32 1 2 E( X1 ) = 21 x12 x12 1 - x14 4 ( )dx1 1 = 0 21 4 8 x1 - x1 dx1 4 0 ( ) = 21 21 84 21 - = = . 20 36 180 45 21 441 1659 553 - = = . 45 1024 46080 15360 Var ( X 1 ) = E ( Y ) = E ( X 1 ). Var ( Y ) < Var ( X 1 ). 3. Let f X, Y ( x, y ) = 2, 0 < x < y, 0 < y < 1, zero elsewhere, be the joint pdf of X and Y. a) b) c) d) e) Find the marginal pdfs f X ( x ) and f Y ( y ). Find the conditional pdfs f X | Y ( x | y ) and f Y | X ( y | x ). Find the conditional means E ( X | Y = y ) and E ( Y | X = x ). Find the conditional variances Var ( X | Y = y ) and Var ( Y | X = x ). Find the correlation coefficient of X and Y, X Y . f ( x, y ) = 2, a) 0 < x < y < 1. f X ( x ) = 2 ( 1 x ), 0 < x < 1. f Y ( y ) = 2 y, f X | Y ( x | y ) = 1/y , f Y | X ( y | x ) = 1/( 1 x ) , y 0 < y < 1. b) 0 < x < y. x < y < 1. c) E( X |Y = y ) = 1 x y dx 0 1 = y 2 , 0 < y < 1. E(Y |X = x ) = 1 1+ x 1- x 2 y dx = = , 1- x 2 2 (1 - x ) x 0 < x < 1. d) E( X2|Y = y ) = y2 1 x 2 dx = , y 3 0 y 0 < y < 1. Var ( X | Y = y ) = y2 y2 3 - 2 = y2 12 , 0 < y < 1. 1 1+ x + x 2 1- x3 E( Y |X = x ) = y dx = = , 1- x 3 3 (1 - x ) x 2 1 2 0 < x < 1. Var ( Y | X = x ) = 1+ x + x 2 1+ x - 3 2 12 2 = 4 + 4x + 4x 2 - 3- 6x - 3x 2 12 0 < x < 1. 1- 2 x + x 2 = = 12 (1 - x ) 2 , [ X | Y = y has a Uniform distribution on ( 0, y ), Y | X = x has a Uniform distribution on ( x, 1 ). ] 1 e) E( X ) = x 2 ( 1 - x ) dx 1 0 = 1 0 2 1 = . 3 3 2 2 1 = . 3 4 6 E( X2) = 2 x 2 ( 1 - x ) dx = Var ( X ) = 1 1 - 6 3 2 = 1 . 18 2 E ( Y ) = y 2 y dy = . 3 0 Var ( Y ) = 1 E( Y ) = 2 1 0 2 y 2 y dy = 2 1 = . 4 2 1 2 - 2 3 2 = 1 . 18 y 1 1 E ( X Y ) = x y 2 dx dy = y 3 dy = . 4 0 0 0 1 Cov ( X, Y ) = 1 1 18 1 1 2 1 = . 4 3 3 36 = 1 . 2 = 36 1 18 4. Let X and Y have the pdf f ( x , y ) = 1, 0 < x < 1, 0 < y < 1, zero elsewhere. Find the cdf and pdf of the product Z = X Y. Hint: Find the cdf of Z, F Z ( z ) = P ( Z z ) = P ( X Y z ), 0 < z < 1, first. FZ( z ) = P( Z z ) = P( Y z X ) z 1 1 = 1d y d x + 0 0 z z x 1d y d x 0 = 1d x + x d x 0 z 0 < z < 1. 0 < z < 1. z 1 z = z z ln z, f Z ( z ) = F Z( z ) = ln z, ' 0 F Z ( z ) = z - z ln z 1 z0 0 < z <1 z 1 fZ( z ) = - ln z 0 0 < z <1 otherwise From the textbook: 4.2-8 (a), (b), (c), (d) 4.2-10 (a), (b) 4.2-12 (a), (b) 4.3-6 4.3-16 + (e) Compute P ( X + Y 1 ). Find the conditional mean E ( X | Y = y ). (f) X has a Uniform distribution on ( 0, 1 ): Y | X = x has a Uniform distribution on ( 0, x ): f X ( x ) = 1, 0 < x < 1. f Y | X ( y | x ) = 1/x , f ( x , y ) = 1/x , (e) P(X + Y 1) = 1 1 0 < y < x. 0 < y < x < 1. x 1 x dy 0 .5 1 - x dx = 2 x -1 0 .5 x 1 1 dx = 2 - dx x 0 .5 1 0 .5 = ( 2 x - ln x ) 1 = 1 + ln 0.5 = 1 ln 2. (f) f Y ( y ) = dx = ln y , y x f X | Y ( x | y ) = 1/x ln y , E( X |y) = - 1 1 0 < y < 1. y < x < 1. = - 1 x x ln y dx y 1- y ln y , 0 < y < 1. ...
View Full Document

This note was uploaded on 04/27/2009 for the course STAT 420 taught by Professor Stepanov during the Spring '08 term at University of Illinois at Urbana–Champaign.

Ask a homework question - tutors are online