CSC_226_Midterm_8

# CSC_226_Midterm_8 - 2k nk n 1 k n 1 k 1 P(n 1 ≤ n 1 k...

This preview shows pages 1–2. Sign up to view the full content.

14. P(n): + + … + + 1k 2k nk nk 1 Domain:{k| k > 0} {n|n > 0} Basis: P(1): 11 12 (True) Proof: + + …+ + 1k 2k nk nk 1 (Inductive Hypothesis) + + … + + + …+ 1k 2k nk nk nk nk + + … + +( + ) ≤( + ) +( + ) + … +( + ) 1k 2k nk n 1 k n 1 k n 1 k n 1 k + + … + + ( + ) ≤( + )( + ) 1k 2k nk n 1 k n 1 n 1 k + + … + +( + ) ≤( + )( + ) 1k

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2k nk n 1 k n 1 k 1 P(n + 1) ≤ ( + ) + n 1 k 1 (mod 101) Binary = 51 5 1 = 52 25 1 = = 54 252 19 = = 58 192 58 1 = = 516 582 31 1 = = 532 312 52 1 = = 564 522 78 1 15. 5 x 25 = 24 (mod 101) 24 x 58 = 79 (mod 101) 79 x 31 = 25 (mod 101) 25 x 52 = 88 (mod 101) 88 x 78 = 97 (mod 101)...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

CSC_226_Midterm_8 - 2k nk n 1 k n 1 k 1 P(n 1 ≤ n 1 k...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online