Chapter1 - DANANG UNIVERSITY OF TECHNOLOGY DANANG...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II DANANG UNIVERSITY OF TECHNOLOGY LECTURE ON CALCULUS WITH ANALYTIC GEOMETRY II Dr. Nguyen Chanh Dinh
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II Chapter 1     INTEGRALS I. AREAS AND DISTANCES 1. The Area Problem: Find the area of the region S that lies under the  curve  y = f ( x ) on [ a,b ]?.  Here   f ≥ 0 is assumed to be continuous. Idea:   Subdividing  S into n strips of equal width  1 2 , , , n S S S L
Background image of page 2
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II The width of each of the n strips is These strips divide the intervals [ a,b ] into n  subinterval b a x n - ∆ = 0 1 1 2 1 [ , ],[ , ], ,[ , ] n n x x x x x x - L
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II where  The right endpoints of the subintervals are The area of S is approximated by the sum: 0 , . n x a x b = = 1 2 3 , 2 , 3 , x a x x a x x a x = + ∆ = + ∆ = + ∆ L 1 2 ( ) ( ) ( ) . n n R f x x f x x f x x = ∆ + ∆ + + L
Background image of page 4
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II Definition:   The  area  A of the region S that lies  under the graph of the continuous function  f   is  the limit: [ ] 1 2 lim lim ( ) ( ) ( ) n n n n A R f x x f x x f x x f = = ∆ + ∆ + + L
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II * i x In fact, instead of using left endpoints or right  endpoints, we could take the height of the i-th  rectangle to be the value of   f   at any   number      in the i-th subinterval           . We call the numbers                   the  sample  points.   1 [ , ] i i x x - * i x * * * 1 2 , , , n x x x L
Background image of page 6
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II A more general expression for the area of S  is * * * 1 2 * 1 lim ( ) ( ) ( ) lim ( ) . n n n i n i A f x x f x x f x x f x x f f = = ∆ + ∆ + + = L
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II Example Let A  be the area of the region that lies  under the graph of   ( ) x f x e - = between x = 0 and x = 2.
Background image of page 8
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II Solution:  Since a = 0 and b = 2, the  width of a subinterval is so 2 0 2 x n n - ∆ = = 1 2 2 4 2 2 , , , , , , i n i n x x x x n n n n = = = = L L
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II 1 2 1 2 2/ 4/ 2 / ( ) ( ) ( ) 2 2 2 . n n n x x x n n n n R f x x f x x f x x e x e x e x e e e n n n - - - - - - = ∆ + ∆ + + = ∆ + ∆ + + = + + + L L L
Background image of page 10
DANANG UNIVERSITY OF TECHNOLOGY CALCULUS WITH ANALYTIC GEOMETRY II According to the definition, the area is 2 / 1 2 lim . n
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 12
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/29/2009 for the course EE 307 taught by Professor Dinh during the Spring '09 term at Washington State University .

Page1 / 96

Chapter1 - DANANG UNIVERSITY OF TECHNOLOGY DANANG...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online