Unformatted text preview: x ) at π/ 4. 3. Use the limit function to evaluate the following limit: lim h → ln( x + h )ln( x ) h Describe what you just did. 4. Evaluate the following diﬀerentials: (a) df dx of f ( x ) = ln( x ) (b) df dx of f ( x ) = sin( x ) cos( x ) Give the simplest form of the answer. (c) ∂f ∂x of f ( x,y ) = x 2 yy 3 + 2 x 23 x 3 y 4 (d) ∂f ∂y of f ( x,y ) = x 2 yy 3 + 2 x 23 x 3 y 4 5. Evaluate the following integrals: (a) R x cos( x ) dx Verify this result by hand. (b) R e x sin( x ) dx (c) R 2 x ln( x ) dx (d) R 2 π sin( x ) cos( x ) dx...
View
Full Document
 Spring '07
 Hayes
 Calculus, Derivative, Limit, dx df dx

Click to edit the document details