Unformatted text preview: AB and line BC is equal to line BA, then lines AC and BC are equal. [C.N. 1] 9. Therefore lines AB, BC and CA are equal to one another. [C.N. 1] 10. Therefore triangle ABC is and equilateral triangle constructed on straight line AB. [Def. 20] Part II. The proof makes the assumption that the two circles cross at exactly a point where they pass directly over the centre of the other circle which would make this proof correct. Also, the proof assumes that the two circles are the same size. If the circles were not the same size or they did not pass directly over the other’s centre, this proof would be incorrect....
View
Full Document
 Fall '08
 HESSE
 straight lines, Euclidean geometry, Line segment, finite straight line

Click to edit the document details