FinalSolutions - M427K Final Exam May 15th, 2007 Question 1...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: M427K Final Exam May 15th, 2007 Question 1 A tank with a capacity of 500 liters originally contains 300 liters of water with 1500 grams of potassium bromide salt in solution. A stronger potassium bromide solution With a concentration of 10 grams of salt per liter flows in a rate of 2 liters per minute. The well mixed solution flows out at a rate of 1 litre per minute. 1. [7 Points] Find an expression for the quantity of potassium bromide salt in solution in the tank after t minutes. Lei GOG be the amounl o? bromide SOd’l' {fl soluhon oi lime 4:. 61(0):le qr Let \fCt) be Hie volume 09 water In the tankdol time, )0 VCtl = Boo «He. £1.63. _. GOG _ N _ Q99) out ‘ 20 — VC’H ‘10 ’?>00+t 3% + ggéflg :20 lsl order linear: lnlegrohng tacior is (300 ft} 0% [(300 + @6160] = 20 (gem-t) 300%) @021 = 60001: + 106‘ +Q 10 J? -r 6000*: +Q QQ‘) = 300 +5; gram) 2 - , r .: (0t +6000} ~r 450000 9mm 2. [2 Points] Determine the concentrazttagnlolf potassium bromide in the tank at the moment the tank is full. ~ I0 (400%) + n ooooo~+ ssooma Tank {3 Hill 0+ -t=2oo. QCzoo): 5w : 20550—0 DIVI‘ClU/lg 8Q+ Hag C‘Onmflfial’on ., 4‘ l (a! WQ gel /5. / 3. [1 Point] Determine the theoretical limiting concentration if the tank had infi- nite volume. 30wa a) {Momma Plow lie. 10 3/3. M427K Final Exam May 15th, 2007 Question 2 [10 Points] Find the solution of the initial value problem dy_ 332 dx_1+y’ y(0)=0 explicitly. Seyorobié (I’rgjidfj = Xildx- £59232 = 5b *Q 15 H; = 7338’ H3l L9+Dl~t =%x3+c‘ (w? = 7%? +0“ Lj-H =f(%xg+C“ V1 U) a“) 1' (1/3 xg’rC'OVZ M427K Final Exam May 15th, 2007 Question 3 Consider the autonomous ordinary differential equation j—:’ = f(y) where f(y) = 2M — my - 2m + 2m. = 2 (3+ 0 C3- 0 C3 4-)?) (3 +229 1. [4 Points] Sketch f (y) vs y. g and nghlafi’l powu {3 rj (l hm C\ yosilwe coellic Mani . 2. [4 Points] Find the equilibrium solutions and classify each according to its stability. 5 pom’rg Bug—1,0, [,1 if «2 IS semisiolale {j =»—\ (q (1)3mpi'0hcollxj 93mth 3» O is um’rolole ‘ \j >l is dgmsel‘biicc‘llg Sicile B = 1 l8 unsi <1th 3. [2 Points] Sketch y(t) vs t. M427K Final Exam May 15th, 2007 Question 4 1. [6 Points] Find the general solution of the inhomogeneous second order ordinary differential equation y" — 5y’ + 6y = (2t + 5)e3t, Cowmant Rim an m”'~5m+6 =Cm~37Cm~7D min are mzlimts 9m: one +C2e Form 0? porhCuior sol”, ‘n‘l‘b' 9%“ (AW)? OVU‘WW 30 afléuagfle“ Nb“ ‘5; = (2M + 1335” + 3(AP+BJC3Q3* ‘59‘ = (1A3. 63" + 6(1AJC+B‘>Q_3JC + CiCAtABJQeg'k' Look 0dr mama‘in o£ 83+. 2A-r6i5 5(8) =ZA+B =5. Look 0dr coeWanl 0? Joe?” nA+qe+ -5(2A+BB)-+e{133:2 QA=1 A ll ’- Tkm B=3 3?: (964439316. Generoi Soiuhon is (j: 0‘ 9%»: Clerc + (9+3?) a” 2. [4 Points] Find the complementary function and a suitable form for a particular solution of y” + 9y 2 tcos(3t) + 63‘ sin(3t) Do not find the undetermined coeflicients. companiede Rmchon kg; q @0589 fczsm (3 t) (5% = COSB’B +<QJC+D33lYIBil OVQAQpS 30 9v.=(Ak1+ek\ COS (29:5 4: (CRUDE SMQE’O km =E€3£ismigfl + Fezkeosféfl 5 Varl’icuim l‘orm (AUHSH COSBt + (Qth D3 smCét) + Eezis‘mOt) T FQ'SJVCQ‘BQ M427K Final Exam May 15th, 2007 Question 5 [10 Points] Find the general solution of the ordinary differential equation my” + (3:1: —1)y'— 3y 2 0 given that —3z 311(90) = e is a solution. Reduclion 0? order 900 ’= V90 {BX W60 = V‘Cx) 53" ~ '3 VCDO 9%“ 3 {3“(0 = \J “(20 «2'3" - (3 v loo 0:3" + Olvbd e" x Subsiflulihg Jrlm‘g (remembering all the V term! Cancel) 7LCVHCL) 6:3" — 6‘v'Cx3e—2X) + (3x *\)< V‘CDQ e‘3"> I: 0. 3x Expanding 0nd ernoVMB the e' comrnon Poclor' IVHOO fixm woo =0 . WOO ‘C34 l/><l VIC-70 =0 lVlnglallVlg PQCWLOI" €‘(3x-Hn r3 3 efgx- 0% [ iQ—ng‘hfl = O i 63" v‘CvO :Q M427K Final Exam May 15th, 2007 Question 6 Consider the second order linear ordinary differential equation y” -m2y’ -y = 0. 1. [6 Points] Find the recurrence rule for the series solution about the point :50 = 0. 00 ~ 2 a x“ B . 11:0 n co ‘ ’30 ‘ T ‘_ h” VH' . h g ' 2 an n X 383‘ = Z Onhx = L on,'t,h—\)>< n: n:\ h=1 3.? __Z ’50 h 3% Z QnHCn~D x" “= Z Cinfl(n+z)(h+\3x ‘ ' “=1 {j n=0 [)0 n B=OKO+CMX "+2an h=1 co Xiij‘: Z QMCH‘W Kn. 34:2. [email protected]+ max ‘* Z cxmdmfimmxw- h=2. 106090 haqu‘éO‘ Qn+2(n+2)(n+\3 ~an. (n—\\ —o\,\ :0 010 _. q‘ , 01 = - Ct - /e ’ 2 7‘ Q (l: Ci“ + (n43 Om—u “*1 ’ n+2)LnH\. 2. [2 Points] Find the first hree non—zero terms of the solution corresponding to y(0) = 1 and y’(0) = 0. l-+-51‘XQ+ tfixq+~~ Qo:\ q\:0 3. [2 Points] Find the first three non—zero terms of the solution corresponding to y(0) = 0 and y’(0) = 1. go:- 0 o“ =\ M427K Final Exam May 15th, 2007 Question 7 [10 Points] Solve the initial value problem 1/” + 22/ + 2y = W)» y(0) = 0, y’(0) = 0 Where 10 cos(2t) 0 g t < 7r W) = 0 7r 3 t using the partial fractions expansion 103 3—4 3—2 (52+4)(s2+2s+2) "32+4 + 52+2s+2 Lapioce hmnsii‘orm 0? We LHS 1"; (31+ 7.3 +23 RH‘fi {g Chunfiw \O cosClJc) Laplace iYQmRnrm 09 RHS‘ {3- 3,23: “€qu Sch/Mg RV Ki? we ob‘imn :____fl;___ _ 4Y3 \Os tiin @HiCSI’rZS’rfi Q (SIHXCSIQHH Now- 4 [0g ‘ ~\ 5 g ’2 >, 3+] _ i i i i $1M) (514 23+2)‘g )5 i 31% +2 31+“ + LSHYH BQHYHE a: - QOSQJQ +1 gmlt + eftcosjc :5 {ksm JC Pu’Fi’ihg Hm‘s kgeiirvu omoi Yemembexmg “‘2 915% 3-, 403(2):) ’vlsmélfl ~+ e’tcost—Be’itsmt A _ — u“ 0:) [’C03 cm + 2 s m 030 + e‘ckflcost’c if) ‘3Qfltqflsmfi-fifl =<1-ufic+>)(i 3mm» ~Coflfl) +Q+QOSJC Jggkgm‘f + Hum [ 5H“ COch) ~3 6”“ 3mg M427K Final Exam May 15th, 2007 Question 8 1. [5 Points] Solve the eigenvalue problem 11” + /\y = 0, y’(0) = (Li/(Tr) = 0- You may assume that A Z 0. l1(‘>\=O lhen 3:0‘9CJrC1. 3‘(.O)=<j‘(1fl=0 means 9,20. Q1 Qcm be Cmglhx‘ng 30 there orenowlflviql soluliom. A30 ‘3 0“ Eigenvale wd’h QlS-QH'RAHC’lOH €o‘=\ WAX) liken lei Ag}. B:C,cos(M><31Czsma<> ‘5‘ = ‘Cs,M3\Yl(M><> 't'C'Z/U cosUwQ g‘CO’FO =a C1=O. g‘Lfl=O %. either Q,=O or 3410041020. For hon-lr‘chil golqhon we mwl’ have MHCMTO=O This meow. Min. Aha-n“ is om QABQIh/Oilbkfl Mlllx eigenlimclion QOSCH><> 2. [5 Points] Use the method of separation of variables to replace the partial differential equation mum + at = 0 with a pair of ordinary differential equations. Lei uCX ,Jc3 = XCXX T06 xX“C>O TCH + XCX) T‘CB =0 LXL)‘_M-_)\ ‘. _ YGO TLH Ciel your own equoih‘om. ~DONCXJ +RXCX) =0 T‘Gf) " KTCH =0 9 M427K Final Exam May 15th, 2007 Question 9 Compute the Fourier sine series for the function f defined on [0, 2] by f(m)={x ng<1 2—33 13mg? bn -= E“ L Rx) sm CHI—xhfix Eda-Fourier 'fibrmulq in our QOOQ L=Z 1. bn = JO $300 3m( “91? >O\x - ‘ nnx 1 'hTTX "J‘ x smi’ 1 >Oi>< ‘ii‘ CX~DS\Y\C—f> (AX O — ><Z—7——-——QOSCHT[X) V + fl-ZLQOS (nix ) 0i>< WW ohfi z 7. - _ , _’lcosCfl) I g ’1 ———n“x 5 [6(2) (W ‘+ MW 203(1)o\.>< i m mw I .__Z_ 31)....igmfl 17‘ =—mr (103(1 +W3ln(__l >0 +m Q03 ; hlfim a. ‘ - 4 L 4 El ‘ W1 3M1 mini slni l) - flI. * REP: M2 = {O m h even. 1-15) n=1mH Thu) We Fourier' Ema. serum \is z Mold is rmr nrrx hqfiq 3m (3:) SIHCT 10 M427K Final Exam May 15th, 2007 Question 10 Suppose the temperature u(:c,t) of a metal bar of length 2m satisfies the partial differential equation €32 _ an 8362 — 8t. Suppose that both ends of the bar are held at 0°C, i.e. u(0, t) = u(2, t) = 0. 1. [4 Points] Give the basic solutions un(m, t) of the boundary value problem. ‘ Iln’lk n UhLX)t> : e 4 Sln( 1x) 2. [3 Points] Find the solution u(a:, t) Which satisfies the initial condition u(:c, O) = 3sin(%) — sin(37rT$) ULch) = 3u.C><fic\~ ugbqfl —T}t 1r>< ~C‘1T2/Jc 311x =3e, 4 stn(-5_-)-«e 4 3m 1 . 3. [3 Points] Find the solution u(x, t) which satisfies the initial condition as 0§m<1 u(m’0)_{2——m 13x32. Note: This is the same function that appears in Question 9. °° g nln‘l/Jc vmx v mr * 4 ULX‘H 1?; nlvl 3M: 3 SIM 1 Pulrth t4) N2 gel the Fourier 3mg gang) Pmm HA2 pmzvmm WoleWl. 11 ...
View Full Document

This note was uploaded on 04/30/2009 for the course M 58055 taught by Professor Windsor during the Spring '07 term at University of Texas.

Page1 / 10

FinalSolutions - M427K Final Exam May 15th, 2007 Question 1...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online