This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: I?
Homework a? MATH 304 Section 3 Assigned: Wednesday, October 29.
Potentially Collected: Wednesday, November 5. 1. Find a basis for the set of vectors in R3 in the plane deﬁned by a: + 2y + z = 0. Hint: Think of the
equation as a system of linear equations. 2. Let IF be the set of all real—valued functions. That is, f E F is such that f : R —> R. 0 Show that IF 1s a vector space with scalars 1R. ——‘ _.._> 7 ”1/
c Find a basis for the subspace spanned by {sin(:13), sin(27;E), sin(m) cos(:c .’L‘)}=—_S 0 W+23+Z=O cemezoaiim W [I 2. no] i i M X 6242.314? &M [W M 'gKLS‘IW/qroé
i xlgi )3 1% )5 has'lAF/m
[ WM jge KMJF) we, £412. (mg; 444% heap! FiSWWziru [12/7 ﬂit“? I 142/] WW( aka $4,653) is 2 dmsiWa/Q Wa/QGM’WZ
baa—0L Lash: if; ZZIO]; iSLI? 5MG:’M+QZV+013‘\7; OMSMéX) 1" 4’2 Sin/2x) +Cl35{n(X)[email protected]')
£10m aims v awe: Zsimékosév) :27: 2,01 50" SW (Ti/w:a 1/2,)? ‘73)“ 573%? (V UV :3 (SW fYESGTti/m) 3:43 ““_$ .. g .. ’ —— .507 §~* 7?
am. é.» a, hoék) 542th65/90 0 ’V s [2
MW) 0 M {304’}; S is Mt‘zem.’ Méwwfl [7.2/qu H @93/
L50. 1  1 @ Rica/355143 % Junaéms ”aw—ML aémanaﬂ 1/3032» 91%; am $21 2 fie—9p 105% @3361)
~ : 7%!) +3 /9()
SCa/gm mJA'E/bajfan 67‘: .2 [AD“>02 M (c596!)
—— c 3%?) I 
AM, M W 633%): 5790+gér)
5» M3 £3, )2. (”mm 3325’ )4 JV“) "" [34%) {5 Co’mw
assbria‘7‘l‘ﬁe— '2 MSSOCfdgML (613) .1. 1—051) 2 666g) +2 £0) + My) == DEA/)4 {2&0 +1’2/2'33
Idem‘ﬁv‘ﬁ 9 [4: + [a 4.11)) (X) 5/901'0 00ng ltke E. In yerSQ yam. (4)50: O 43m; 4’ ”(u/4323f Z ' ﬂ Assoc {a‘lllVQ (Co‘DaCéA) =2 c [0‘ 506!) near Ma 7C
Wdalﬁ C,0(
6/? 1 ML é (#9)»): 4ng = (CW “3360
Mamie/)1 (@0096‘) s (ngy) a ﬂ>w+ MM) E
i
E
n M40955 F13 0.. Mozévr‘ 3 «CE,
WALK Swan scram, ﬂ ...
View
Full Document
 Fall '09
 Linear Algebra, Algebra, Vectors, Elementary algebra, 3%, 0l, 7%, 5mg

Click to edit the document details