04A-01.PDF

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
An Evaluation Framework and Instruction Set Architecture for Ion-Trap based Quantum Micro-architectures. Steven Balensiefer, Lucas Kregor-Stickles, and Mark Oskin Department of Computer Science and Engineering University of Washington { alaska, lucasks, oskin } @cs.washington.edu Abstract: The theoretical study of quantum computation has yielded efficient algorithms for some traditionally hard problems. Correspondingly, experimental work on the underlying phys- ical implementation technology has progressed steadily. However, almost no work has yet been done which explores the architecture design space of large scale quantum com- puting systems. In this paper, we present a set of tools that enable the quantitative evaluation of architectures for quan- tum computers. The infrastructure we created comprises a complete com- pilation and simulation system for computers containing thousands of quantum bits. We begin by compiling complete algorithms into a quantum instruction set. This ISA enables the simple manipulation of quantum state. Another tool we developed automatically transforms quantum software into an equivalent, fault-tolerant version required to operate on real quantum devices. Next, our infrastructure transforms the ISA into a set of low-level micro architecture specific con- trol operations. In the future, these operations can be used to directly control a quantum computer. For now, our simula- tion framework quickly uses them to determine the reliability of the application for the target micro architecture. Finally, we propose a simple, regular architecture for ion- trap based quantum computers. Using our software infras- tructure, we evaluate the design trade offs of this micro ar- chitecture. 1 Introduction Experimental research into quantum computing technologies has been progressing at a steadily. Demonstrations of bulk- spin NMR computers [1], ion-trap based designs [2, 3, 4], and optical cavity wells [5, 6] for quantum computation have been performed. The next step in this area is to scale up from experimental quantum computers consisting of a hand- ful of quantum bits to large scale quantum computing sys- tems. Clearly many technological hurdles still exist, and one of the most basic is the architectural design of these systems. Why worry about the architecture of a quantum computer now? The most promising technologies are at least five years from demonstrations of a dozen qubits or more, and large scale systems are not even seriously on the drawing board.
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern