Hw4Sol - Homework Solutions Assignment Number 4 Due...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Homework Solutions Assignment Number 4 Due February 12, 2007 Section 5.4. Problem 19. (a) (i) E ( ˆ θ 1 ) = E ( Y 1 ) = Z ∞ y 1 θ e- y/θ dy = θ (ii) E ( ˆ θ 2 ) = E ( Y ) = E 1 n n X i =0 Y i ! = 1 n n X i =0 E ( Y i ) = 1 n · nθ = θ (iii) First, we will compute the pdf for Y min , and use that to compute the pdf for n · Y min : f Y min ( y ) = nf Y ( y )(1- F Y ( y )) n- 1 = n 1 θ e- y/θ [1- (1- e- y/θ )] n- 1 = n 1 θ e- ny/θ = nf Y ( ny ) . Now, to compute the pdf for n · Y min , we consider that P ( a < n · Y min < b ) = P ( a/n < Y min < b/n ) = R b/n a/n f Y min ( y ) dy = R b a 1 n f Y min ( y/n ) dy , so the pdf f n · Y min ( y ) is f n · Y min ( y ) = 1 n f Y min ( y/n ) = 1 n · nf Y ( y/n · n ) = f Y ( y ) . This tells us that E ( ˆ θ 3 ) = E ( n · Y min ) = E ( Y ) = θ . (b) (i) Var( Y 1 ) = E ( Y 2 1 )- E ( Y 1 ) 2 = Z ∞ y 2 1 θ e- y/θ dy- θ 2 = 2 θ 2- θ 2 = θ 2 (ii) Var( Y ) = Var( 1 n n X i =1 Y i ) = 1 n 2 n X i =1 Var( Y i ) = 1 n 2 ·...
View Full Document

This note was uploaded on 03/23/2008 for the course MATH 181A taught by Professor Xu,lily during the Spring '07 term at UCSD.

Page1 / 3

Hw4Sol - Homework Solutions Assignment Number 4 Due...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online