Hw4Sol

# Hw4Sol - Homework Solutions Assignment Number 4 Due Section...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Homework Solutions Assignment Number 4 Due February 12, 2007 Section 5.4. Problem 19. (a) (i) E ( ˆ θ 1 ) = E ( Y 1 ) = Z ∞ y 1 θ e- y/θ dy = θ (ii) E ( ˆ θ 2 ) = E ( Y ) = E 1 n n X i =0 Y i ! = 1 n n X i =0 E ( Y i ) = 1 n · nθ = θ (iii) First, we will compute the pdf for Y min , and use that to compute the pdf for n · Y min : f Y min ( y ) = nf Y ( y )(1- F Y ( y )) n- 1 = n 1 θ e- y/θ [1- (1- e- y/θ )] n- 1 = n 1 θ e- ny/θ = nf Y ( ny ) . Now, to compute the pdf for n · Y min , we consider that P ( a < n · Y min < b ) = P ( a/n < Y min < b/n ) = R b/n a/n f Y min ( y ) dy = R b a 1 n f Y min ( y/n ) dy , so the pdf f n · Y min ( y ) is f n · Y min ( y ) = 1 n f Y min ( y/n ) = 1 n · nf Y ( y/n · n ) = f Y ( y ) . This tells us that E ( ˆ θ 3 ) = E ( n · Y min ) = E ( Y ) = θ . (b) (i) Var( Y 1 ) = E ( Y 2 1 )- E ( Y 1 ) 2 = Z ∞ y 2 1 θ e- y/θ dy- θ 2 = 2 θ 2- θ 2 = θ 2 (ii) Var( Y ) = Var( 1 n n X i =1 Y i ) = 1 n 2 n X i =1 Var( Y i ) = 1 n 2 ·...
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

Hw4Sol - Homework Solutions Assignment Number 4 Due Section...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online