m 408l hw 6 - wwm364 Homework 6 Cepparo (58400) 1 This...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: wwm364 Homework 6 Cepparo (58400) 1 This print-out should have 17 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay 4 1 ln t 7 t dt . 1. I = 8 7 (ln2 + 1) 2. I = 4 7 (ln4- 1) correct 3. I = 8 7 (ln2- 1) 4. I = 4 7 (ln4 + 1) 5. I = 1 7 (ln4- 1) 6. I = 1 7 (ln2 + 1) Explanation: After integration by parts, I = 2 7 bracketleftBig t ln t bracketrightBig 4 1- 2 7 integraldisplay 4 1 t parenleftBig 1 t parenrightBig dt = 4 7 ln 4- 2 7 integraldisplay 4 1 1 t dt . But integraldisplay 4 1 1 t dt = 2 bracketleftBig t bracketrightBig 4 1 . Consequently, I = 4 7 ln4- 4 7 = 4 7 (ln 4- 1) . keywords: integration by parts, logarithmic functions 002 10.0 points Determine the integral I = integraldisplay 4 x (ln x ) 2 dx . 1. I = 4 x 2 parenleftBig (ln x ) 2 + ln x- 1 2 parenrightBig + C 2. I = 2 x 2 parenleftBig (ln x ) 2- ln x- 1 2 parenrightBig + C 3. I = 4 x 2 parenleftBig (ln x ) 2 + ln x + 1 2 parenrightBig + C 4. I = 2 x 2 parenleftBig (ln x ) 2- ln x + 1 2 parenrightBig + C correct 5. I = 2 x 2 parenleftBig (ln x ) 2 + ln x + 1 2 parenrightBig + C 6. I = 4 x 2 parenleftBig (ln x ) 2- ln x + 1 2 parenrightBig + C Explanation: After integration by parts, integraldisplay x (ln x ) 2 dx = 1 2 x 2 (ln x ) 2- integraldisplay x 2 1 x ln x dx = 1 2 x 2 (ln x ) 2- integraldisplay x ln x dx. But after integration by parts once again, integraldisplay x ln x dx = 1 2 x 2 ln x- 1 2 integraldisplay x 2 1 x dx = 1 2 x 2 ln x- 1 2 integraldisplay x dx = 1 2 x 2 ln x- 1 4 x 2 + C. Thus integraldisplay x (ln x ) 2 dx = 1 2 x 2 (ln x ) 2- 1 2 x 2 ln x + 1 4 x 2 + C. Consequently, I = 2 x 2 parenleftBig (ln x ) 2- ln x + 1 2 parenrightBig + C . wwm364 Homework 6 Cepparo (58400) 2 keywords: integration by parts, log function 003 10.0 points Determine the integral I = integraldisplay ( x 2- 3) sin2 x dx . 1. I = 1 4 parenleftBig 2 x sin2 x +(2 x 2- 7) cos2 x parenrightBig + C 2. I = 1 2 x 2 sin 2 x- x cos2 x + 5 2 sin 2 x + C 3. I = 1 4 parenleftBig 2 x sin 2 x- (2 x 2- 7) cos 2 x parenrightBig + C correct 4. I = 1 4 parenleftBig 2 x cos2 x +(2 x 2- 7) sin2 x parenrightBig + C 5. I =- x 2 cos 2 x + x sin 2 x- 5 2 cos 2 x + C 6. I = 1 2 parenleftBig 2 x sin2 x- (2 x 2- 7) cos2 x parenrightBig + C Explanation: After integration by parts, integraldisplay ( x 2- 3) sin2 x dx =- 1 2 ( x 2- 3) cos2 x + 1 2 integraldisplay cos 2 x braceleftBig d dx ( x 2- 3) bracerightBig dx =- 1 2 ( x 2- 3) cos 2 x + integraldisplay x cos 2 x dx . To evaluate this last integral we need to inte- grate by parts once again. For then integraldisplay x cos 2 x dx = x sin2 x 2- integraldisplay sin 2 x 2 dx = 1 2 x sin 2 x + 1 4 cos 2 x ....
View Full Document

This note was uploaded on 03/24/2008 for the course M 408L taught by Professor Radin during the Spring '08 term at University of Texas at Austin.

Page1 / 9

m 408l hw 6 - wwm364 Homework 6 Cepparo (58400) 1 This...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online