9c6c8fc5bd-p-80.pdf - 7.8 APENDICE 2 M LAGRANGIANA Y...

This preview shows page 1 out of 1 page.

7.8. AP ´ ENDICE 2: M. LAGRANGIANA Y HAMILTONIANA 147 N´otese que fijado cualquier entorno coordenado ( U, q 1 , . . . , q n ) de p 0 la matriz de la diferencial de Leg ( p 0 ,t 0 ) en cada v p 0 T p 0 Q resulta ser 2 L ˙ q i ˙ q j ( v p 0 , t 0 ) i,j , por lo que L es regular en ( p 0 , t 0 ) si y s´olo si esta matriz (para unas coordenadas alrededor de p 0 y, por tanto, para cualesquiera) es regular en todo vector v p 0 tangente a p 0 . Diremos que L es regular si es regular en todo ( p 0 , t 0 ) Q × R . En adelante, supondremos por simplicidad la condici´on algo m´as fuerte de que L sea hiper-regular , esto es, que Leg ( p 0 ,t 0 ) sea un difeomorfismo (no s´olo local, sino global) ( p 0 , t 0 ) Q × R . Por tanto, en este caso se tiene el difeomorfismo: Leg : TQ × R TQ * × R ( v p , t ) v p = Leg ( p,t ) ( v p ) , t ) . (7.6) Ejercicio. Sea ( Q, g ) una variedad semi-riemanniana y consideremos la lagrangiana L : TQ × R R ( v p , t ) 1 2 g p ( v p , v p ) - V ( p, t ) (7.7) para cierta funci´on V : Q × R R ( potencial ). Demu´ estrese que, independientemente del valor de t
Image of page 1

You've reached the end of your free preview.

Want to read the whole page?

  • Winter '15
  • Espacio vectorial, Adrien-Marie Legendre, Sistema de coordenadas, ∂L, Lagrangiano

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern