9c6c8fc5bd-p-72.pdf - 132 CAPITULO 7 CAMPOS TENSORIALES...

This preview shows page 1 out of 1 page.

Cap´ ıtulo 7 Campos tensoriales m´ etricos Cuando a cada espacio tangente T p Q de una variedad Q se le fija un producto escalar g p se tiene una variedad semi-riemanniana (en parti- cular, riemanniana o lorentziana seg´un el ´ ındice del producto escalar). Puesto que g p determina un isomorfismo can´onico entre T p Q y su es- pacio dual, en este cap´ ıtulo traduciremos las propiedades de las formas diferenciales vistas en el cap´ ıtulo anterior a campos vectoriales. En particular, definiremos los campos conservativos e irrotacionales como los asociados a formas exactas y cerradas, respectivamente. Tambi´ en definiremos el concepto de variedades semi-riemannianas isom´ etricas , que permite decidir cu´ando dos variedades semi-riemannianas tienen todas sus propiedades iguales. Finalmente, anticipamos el concepto de distancia asociada a una m´ etrica riemanniana, que desarrollaremos m´as ampliamente en el Cap´ ıtulo ?? .
Image of page 1

You've reached the end of your free preview.

Want to read the whole page?

  • Winter '15
  • Espacio vectorial, Cálculo tensorial, campos, Espacio dual, Producto escalar

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern