Algebra_Rules.pdf - Rules of Algebra Quadratic Formula Special Product Formulas 2 2 3 3 3 3 If a 0 the roots of 0 are 4 2 Exponents and Radicals 2 2

# Algebra_Rules.pdf - Rules of Algebra Quadratic Formula...

• Assignment
• 1

This preview shows page 1 out of 1 page.

Unformatted text preview: Rules of Algebra Quadratic Formula Special Product Formulas                 2         2           3    3          3    3    If a ≠ 0, the roots of        0 are  √  4  2 Exponents and Radicals                                  ⁄   √     √   √  √ √    !   √ √  " √                  2          2                                    Binomial Theorem ⁄  √ ⁄ Special Factoring Formulas √  Absolute Value (p > 0) ||  * if and only if either   * or   *, which means   * || , * if and only if both  , * and  - *, which means * ,  , *. || / * if and only if both  / * and  0 *, which means * /  / *. || - * if and only if either  - * or  , *. || 0 * if and only if either  0 * or  / *. Inequalities # #                      1 2 #  ' '  %    % &   If a > b and b > c, then a > c. If a > b, then a+c > b+c. If a > b and c > 0, then ac > bc. If a > b and c < 0, then ac < bc. where ! '  '! '! Sequences and Series Exponentials and Logarithms Sum 1 of the first n terms of an arithmetic sequence with first term  and common difference d 1  2    or 1  232  # 145 Sum 1 of the first n terms of a geometric sequence with first term  and common ration r 1  7  8    8 or 19  7  8 Arithmetic mean A of n numbers :     %   # Geometric mean G of n numbers ;  "  …  , ' - 0   log   @A#B  C   log    log    log   log    log   log    log   8  D log   EFGH I   log   I   log  1  0 log    1 log   logJ  ln   log L  log  M  log  M log   ...
View Full Document