PSTAT-174-Final-Project (2).pdf - Modelling Cellular Phone Subscriptions in India PSTAT 174 June 6 2018 Group Theta Jeremy Berkov Maximilian Broekhuis

PSTAT-174-Final-Project (2).pdf - Modelling Cellular Phone...

This preview shows page 1 - 4 out of 21 pages.

Modelling Cellular Phone Subscriptions in India PSTAT 174 June 6, 2018 Group Theta: Jeremy Berkov Maximilian Broekhuis Lauren Wong Winson Li Crystal Chau
Image of page 1
Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Initial Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Box Cox Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Removing Trend and Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ARMA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Diagnostics Checking on Test Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ARIMA(1,1,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ARIMA(2,1,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ARIMA(0,1,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ARIMA(1,1,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Analyzing Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Initial Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Box Cox Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Removing Trend and Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ARMA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Diagnostic Checking on Test Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Image of page 2
Abstract The purpose of our project was to accurately forecast the number of mobile cellular phone subscriptions in India, based on previous rates. This is of interest in relation to the recent and massive incorporation of a digital identity system named Aadhaar. Aadhaar is a 12-digit unique identity number that can be obtained by residents of India, based on their biometric and demographic data. In our analysis of the time-series, we used various techniques, including Box-Cox transformations and differencing to make the time series stationary and thus allowing us to identify potential models by looking at ACF and PACF plots. During our analysis, we were able to come up with many candidate models, however, only one of our candidates was most suitable for forecasting: ARIMA(1,1,2) model. The ARIMA(1,1,2) model passed the Box-Ljung and Shapiro-Wilk tests, is viable for forecasting, and best satisfies the principle of parsimony, compared to our other candidates. Through forecasting we were able to plot a potential trajectory with 95% confidence for four years in the future. Despite certain validation points being outside the confidence interval, our forecasted values still remain valid. Introduction The Aadhaar Act, passed in 2016, is a money bill from the Parliament of India that is aimed at providing legal backing for the unique digital identification system implemented by Aadhaar. The Aadhaar Act is also known as the Targeted Delivery of Financial and other Subsidies, Benefits and Services Act, which perfectly describes the motives behind its implementation. Though China is often brought up during discussions of overpopulation and population density, India faces many of the same issues and has been actively solving the problems, evidenced by Aadhaar and its great success. The Aadhaar act has seen authentication success rates for government services of up to 96.4% in 2013, though the rates have fallen to around 88% currently. In general, Aadhaar is aimed at increasing financial inclusion and benefit participation for all Indian citizens, and we believe that looking at mobile cellular phone subscriptions is a strong indicator of these factors.
Image of page 3
Image of page 4

You've reached the end of your free preview.

Want to read all 21 pages?

  • Fall '09
  • MEIRING
  • Normal Distribution, ACF, residuals, Autoregressive integrated moving average

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture