# WA2.docx - Carl Bell Jr ID 0560110 Thomas Edison State...

• 11
• 100% (5) 5 out of 5 people found this document helpful

This preview shows page 1 - 3 out of 11 pages.

Carl Bell Jr ID: 0560110 Thomas Edison State College Calculus III (MAT - 331) April 2017 Written Assignment 2 Section 11.1 8. parabola 30. 3 3 2 2 0 0 4 ,3cos ,3sin ,0 3 16 9sin 9cos 5 15 r t t t t t s t tdt dt Section 11.2 4. 2 1 1 lim 1, 3, 1 t t t t t 1 1 lim 1 t t t does not exist Therefore, 2 1 1 lim 1, 3, 1 t t t t t does not exist 10. cos5 ,tan ,ln r t t t t cos5 t continuous for all real t tan t continuous everywhere except at 2 1 2 t n ln t is continuous everywhere except 0 t
r t is continuous for all 0 t and 2 1 2 t n 18. 2 cos5 ,tan ,6sin ' 5sin5 ,sec ,6cos r t t t t r t t t t   24. 2 2 cos ,sin ' 2cos sin ,2sin cos sin 2 ,sin 2 r t t t r t t t t t t t   Is continuous everywhere if ' 0 r t and 2 n t It is smooth everywhere with 2 n t as the endpoints 34. 2 1 2 2 2 1 3 ,sin cos ,sec 1 2 2 , sin ,tan 3 t e t t t dt t t e t t c Section 11.3 8. 2 3 2 1 2 1 2 3 2 4 , 1 , 0 10, 2 2 , 3 0 10, 2 10, 2 2 10, 2 3 v t t t r t r t v t dt t c t c r c c t r t t t      