Ch29Word - Chapter 29 Page 1 CHAPTER 29 Electromagnetic...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter  29  Page 1 CHAPTER 29 – Electromagnetic Induction and Faraday’s Law 1. The average induced  emf is å  = –  N  ? Φ B /? t  = – (2)[(+58 Wb) – (– 80 Wb)]/(0.72 s) =       – 3.8 × 10 2  V . 2. Because the plane of the coil is perpendicular  to the magnetic field, the initial flux through  the loop is  maximal.  The magnitude  of the average induced  emf is å  = – ? Φ B /? t  = –  A  ? B /? t  = – p(0.13 m) 2 (0 – 0.90 T)/(0.15 s) =       0.32 V . 3. As the coil is pushed  into the field, the magnetic flux  increases  into the page.  To oppose this increase, the flux  produced  by the  induced  current must be out of the page, so the induced   current is   counterclockwise . 4. As the magnet is pushed  into the coil, the  magnetic flux  increases to the right.  To oppose this increase,  the flux  produced  by the induced  current must be to the  left, so  the induced  current in the resistor will be from right to left . 5. The magnitude  of the average induced  emf is å  = – ? Φ B /? t  = –  A  ? B /? t  = – p(0.036 m) 2 (0 – 1.3 T)/(0.20 s) =       0.026 V . 6. We choose up  as the positive direction.  The average induced  emf is å  = – ? Φ B /? t  = –  A  ? B /? t  = – p(0.046 m) 2 [(– 0.25 T) – (+ 0.63 T)]/(0.15 s) = 3.9 × 10 –2  V =       39 mV . Use Word 6.0c or later to view Macintosh picture.
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Chapter  29  Page 2 7. ( a ) The increasing current in the wire will cause an increasing  field into the page through  the loop.    To oppose this  increase, the induced  current in the loop will produce a flux  out of the page, so the direction of the induced  current will be  counterclockwise . ( b ) The decreasing current in the wire will cause a decreasing  field into the page through  the loop.    To oppose this  decrease, the induced  current in the loop will produce a flux  into the page, so the direction of the induced  current will be       clockwise . ( c ) Because the current is constant, there will be no change in flux,  so the induced  current will be       zero . ( d ) The increasing current in the wire will cause an increasing  field into the page through  the loop.    To oppose this  increase, the induced  current in the loop will produce a flux  out of the page, so the direction of the induced  current will be       counterclockwise . 8. ( a ) As the resistance is increased, the current in the outer loop  will decrease.  Thus the flux through  the inner loop, which is  out of the page, will decrease.  To oppose this decrease, the  induced  current in the inner loop will produce a flux out of the  page, so the direction of the induced  current will be      
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern