{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

che310hw4

# che310hw4 - Ch E 310 Fall 2008 Homework 4 Solutions Problem...

This preview shows pages 1–2. Sign up to view the full content.

Ch E 310 – Fall 2008 - Homework 4 Solutions Problem 1 bisect.m function V = bisect(T,P,xl,xu) ea=1; % set initial error to be 1 % define parameters for R-K EOS R = 83.14; T_c = 416.3; P_c = 66.8; a = 0.42748*R^2*T_c^2.5/P_c; b = 0.08664*R*T_c/P_c; % define root finding function f = @(P,T,V) P - R*T/(V-b) + a/((V*(V+b))*sqrt(T)); % define bracket function values and initialize guess fl = f(P,T,xl); fu = f(P,T,xu); xnew = xu; % test to see if the chosen bracket contains a root if fl*fu > 0 error( 'bracket does not contain a root' ) else while (ea >= 0.005) % run until result is within defined tolerance xold = xnew; % retain old guess xnew = (xl + xu)/2; % bisect to find new guess fnew = f(P,T,xnew); % evaluate function at new guess if fnew*fu < 0 % re-test to find which side of bracket to update xl = xnew; else xu = xnew; end ea = abs(xnew-xold)/xnew; % calculate absolute approximate error end V = xnew; % return specific volume end hw4_1.m bisect(273+60,440,50,200) % P = 440 bar, 60 C bisect(273+60,1.01325,45,100)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 4

che310hw4 - Ch E 310 Fall 2008 Homework 4 Solutions Problem...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online