David GambleBrewerMAT275ONLINEBSpring2018Assignment Section6.2SolutionofI.V.P due 04/14/2018 at 11:59pm MST1.(1 point) Find the inverse Laplace transformf(t) =L-1{F(s)}ofF(s) =2s+9s2+13s>0f(t) =.Solution:L-1n2s+9s2+13o=2L-1nss2+13o+9√13L-1n√13s2+13o=2cos(√13t)+9√13sin(√13t)Correct Answers:•2*cos(3.60555127546399*t)+2.49615088301353*sin(3.60555127546399*t)2.(1 point) Find the inverse Laplace transformf(t) =L-1{F(s)}ofF(s) =9s+5s2-9s>3f(t) =.Substituting the initial conditions gives:s2Y-2s+2+3sY-6-10Y=0(2) Solving forYgives:Y=2s+4s2+3s-10=2s+4(s-2)(s+5)(3) Performing Partial Fraction Decomposition yields:2s+4(s-2)(s+5)=87s-2+67s+5(4) Inverting the transform, we findy(t) =87e2t+67e-5tCorrect Answers:•sˆ2*Y-2*s--2+3*(s*Y-2)+-10*Y•(2*s+4)/(sˆ2+3*s+-10)•1.14285714285714/(s-2)•0.857142857142857/(s+5)•1.14285714285714*exp(2*t)+0.857142857142857*exp(-5*t)4.(1 point) Use the Laplace transform to solve the followinginitial value problem:y00+8y0=0y(0) =7,y0(0) =7
Get answer to your question and much more