Solutions to Exam 3 (Blue Version) Ma123, F05

Calculus (With Analytic Geometry)(8th edition)

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 30me; P EWM “DI - BLUE 1. (46 pts.) Compute each of the following integrals: _ I _|‘_ V a.IxJ;2dx 1: S '(Clz‘ "2-" I An ': LL rL LL + C (2/39 ((6’) [E bj t2+2 “=- 421*?- 40.1 7-th la 7" u is“: re continued next page 0‘: "we 'fi ’K: I—oL Juz—JX 2J1— dx x x _Clu= 4x I o S XtdFX c‘K : __ (ka'faclu o l o o 31 5 :1’8 (I'1“*'“L)“lltc‘u :_$ “k—lu/ +u/1 Ju l t 3/1, 51 1/,_ D :~ (A ~fo_4—._‘fi_ /AO-~<E_1 (3/1) (7/74 ( h) ' 3 5 2 +3. q 3 5 7 %é\ -lclu w 7‘ ‘L I’VX'L r Au': '1xéx / *iéu: ‘xéuc 9C 3 fialx : PL J. .ALL (’XL) L a? -2 :-l—Su—3AU‘~ ’r’i (f—~+c 2— —--2. ; i 2. (18 pts.) Consider the two curves f(X)=x2—4x+3 H17“; , g(x) = —x2 +2x+3 shown below: sz 21mm Truce Fmfilr'aF-h HFIIH F:I'1[I l-lfllIT FUHIZ a. At what x values do the two curves intersect? KQ’~4'K 4—3 = ~73 4'7'V‘4'3 7? {LX1-é‘K30 9 (2.1: (no-39"!) ‘?C=- 0/3 b. Write a single integral (don’t evaluate it) for the (shaded) area between the two curves. ,7: ~KL+21<+3 ’3 g ;(C,— 7(14- 11k3)’(K1-4K+33> 47C 0 v ’3 c 762'*4'1<*5 A 7‘ 3. (13 pts.) Determine the following: d x -4 p- ; _l"t +1dt “Ker £1 : 2 a x1 1 ’5 4. (19 pts.) The region between the curve (597" f 2 g ,_ 7C1. $ ’ a. __ _ 2 y—ZJZS x K1 2 2;, ’7/+ and the x—axis in the first quadrant is shown below. Note that (5,0) and (0,10) are points on the curve. 1. 'X 2 25" 7 /4‘ Fiv sz F3 FH Fsv FEv F? Tut-15 Emu-'- Tr'ac-e Mar-1H: Hath Draw Pen ':| < D! ‘0 7 ' | / (5 a) h x. HFIIH m EHHIZT FUHE a. Write, but don’t evaluate, an integral for the volume of the object obtained when revolving this (shaded) region about the x-axis. 5 I (r 61 WfA'K O b. Write, but don’t evaluate, an integral for the volume of the object obtained when revolving this (shaded) region about the y-axis. [0 K?0 7C: 47- J 2;,,71/+) 47 25’ ‘7"/<I~ D Hint: The answers to parts a. and b. are different. 5. (9 pts.) The region below the curve f(x)=x3 +3x2, 15x32 and above the x—axis, for 15 x S 2, is displayed below: HHIH HHD EHHET FUHII Which of the following is thq upper sum ylpproxima’ting the area under the curve and above the x-axis between 1 and c oose one)? } "-11 i 3 i 2 ii. Z—Kn—J +3(1+—) ] / i=0" n n " 1 i 3 i 2 111. —- 1+— +3 1+— ,-=on n n ,.:¢[(2)’+3(2fl for fi WW ...
View Full Document

Page1 / 5

Solutions to Exam 3 (Blue Version) Ma123, F05 - 30me; P EWM...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online