This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Math 123 Calculus I Name: §OLUT70N§ “ BLUE. Exam I Fall 2007 RWJ
No calculators allowed, one page of notes allowed Instructions:
0 Read questions carefully 0 Help me award you (partial) credit by showing your work (except on problems 4
and 5) 0 Note point values on questions — I 05 points are listed, 1 00 points is possible
0 Check your answers if you ﬁnish early
0 The exam ends promptly at 2:52
0 Good luck! 1. / 15 2. / 28 3. / 20 4 / 10 5 . / 8 6. / 9 7. / 15 /105 l. (15 pts.) The position of an object at time x is given by f(x)=\/x+l a. Find the position of the object at time x = 0. Also ﬁnd the position of the object at time x28. nC/o)=J\—=[y
«9/804?— =(3) b. What is the average velocity of the object over the time interval [0, 8]? 41/9} We) 3:: l c
’ ‘ Q '0 87,0 0. Give an expression for the average velocit over the time interval [x, x + h].
’P/X*L)'L(x)  J 7(4'L\*I  x44 ’ (1. Using your answer from part c (and not any “shortcut” methods) determine the
instantaneous velocity of the object at time x. \jxvrh’rf ’ MI mel JrJ'xH _______________________. In J‘kafl l'\j7<+l
Qwhqtoun) ; \ ______’.__————————— In 4—5:) {\l'wa] 4—5;?) 4A ﬁ/xru) ﬁ/x) __ A J , ﬂ; k (m MEI) @‘ 2. (28 pts.) Compute the derivatives of the following. Don ’t waste time simplifying. a. 3x7 —6x3 +5x—10 " lgx?’* 5 b. (2x6 +5x4 +3x2 —x+7)sinx (/276‘4' Zoxat’éx—(D 9&1: +—
(ZxékE'qu— hm'xr7> WX 13x5—4x3+3x+1
x3+2x—7 (45%+— /’2_ 'x" #3) {763+1x—7) ——(/37(5— f‘x3+3x%t)(3x"+z)
_//_—__—_’__________________—_
(W3 f'Zx—7)L C. d. tan[(5x2 + 3x +1)“2] .vI/l %z[(5xzf3X+l)btj  2%(5’X1437ﬁ4'l) (/ox43) 3. (20 pts.) Find Don ’t waste time simpliﬁzing.
X x3 sin x a. y=
x2+x+3 (aklﬁixk kgmvc)('x7’+‘x+})— 6(3ﬁx)(7.7cﬂ) 4% (>9 ,L x*3)L b. y = (6x3 + 5x+8)10(3x2 + 2x+1)8 4%: ; /0(6x34’5ka)q(/9x"/'5) [3x7'4—1x4rl): 7"
[Aﬁrhkﬂw 5’(3«14—1x4—1)7 (4x44) dy 0. xy2 = sin(xy) (your expression for d— will be in terms of both x and y)
x
,4— (‘PC 1 ’— ; EI'LC 1047
47c ’7 ) x U) 7" Ir X g— (o‘)  mew)  :1: (my)
Ax Jx Ax ' 1207 _. xm[¢7) 4. (10 pts.) For each of the following indicate Whether the statement is true or false (no
work necessary): a. If f is continuous at x, then f is differentiable at x. True oircle one)? b. If f is not continuous at x, then f is not differentiable at x. or False (circle one)? c. For any function f, lim f (x) = f (0). True o(circle one)?
d. If f and g are differentiable, then (fg)' = f ' g'. True ocircle one)? e. If f and g are differentiable, then (f + g) '= f '+ g' @ or False (circle one)? 5. (8 pts.) Fillin the blank: a. If f '(x) exists, then we say that f is '1‘ M'b £6 at x. b. If 1imf(x) = f(c), then we say that fis mﬁhuws at c. X—)C 6. (9 pts.) Suppose f is a continuous ﬂinction on [1,5]. Also suppose f(1) =—4
f(5) = 6 a. f necessarily has a zero (or root) between what two x values? [+5 b. If the bisection method is used, at what x value do we now evaluate f? 0. Suppose f is negative at the x value you gave in part b. Where do you now evaluate f? 7. (15 pts.) For the following limit problems:
0 If the limit exists, give me the (ﬁnite) value of the limit 0 If a limit does not exist, answer using 00 or —oo when appropriate, otherwise
write “Does Not Exist” a.lim "2—3 z A, x.) . A “J‘— — .L
H3" ‘9 >993 Q‘JX’V’” xa} Qua) é x2+2x—l _ (1)1440) —I [*4 b. lim
H1 x + 4 H MD" ...
View
Full Document
 Summer '06
 JOHNSON
 Calculus, Velocity, pts, Continuous function

Click to edit the document details