{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Sample_Exa-_1994

# Sample_Exa-_1994 - Name> PHYSICS 322 Hour Exam March 2...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Name > PHYSICS 322 Hour Exam March 2, 1994 Do all four problems; they are of equal weight. Before beginning any long calculations, state brieﬂy the principles you intend to use. 5‘59?” /100 so = 8.85 x 10"12 fared/meter [e] = 1.6 x 10‘19 Coulomb me; = 0.91 x 10"30 kg 1 =9x109 41reo V 1.a)( 12 pts) State Gauss’s law of electrostatics in integral form and in differential form. C“ ,. 1“ SVEL'AE = Ciwmk lgo SV= We QMQWUVJLM ‘ E3: like"; QWCK‘: QW‘R Q AQ\\ W‘ Z '5 b(13 pts) A spherical conductor of radius R and charge Q is surrounded by a concentric (thin) M spherical shell at radius 1.953. to 2R. The shell has net charge -2Q. Te Find the charge densities on the furfaces at R, 1.95R and 2R. R .. ' e— : 01:7»63 /U—rw K13 ’ “shun \R‘ak Maw —Qz K°9~Klbvmkwkowmxshm W 8’ —; _. clien- (maxik’ﬂ 'me Mt c.\r\°~"°e N am”: «m ‘SQ NW Mama RAM. v ~k~m=~®< ' Lg 6"-< —Cx/Q*W"‘Kkl Find the electric ﬁeld at radius 1.5R and at radius 3R from the center of the concentric spheres. 4. E U, mm“ bk MQW usch w glelnmxmg S '\ 62 E khga —.—. n, ___._. E ' kggfu = "q k“@ 2.(25 pts) A long cylindrical conducting shell, of inner and outer radii 0.95a. and 1.03. is placed , _ t. in an initiale uniform elecnc ﬁeld £30. The direction of E0 is perpendicular to the 4 cylinder axis. © 4% Find the potential at points interior and exterior to the shell. 3.2; 7: 'Pxo+ ’BQQmm + kp‘xk‘r \$05 ems-Q4 \clv'x ‘ Q lachmm no (Ma y 0 ll E5 L“ _L_ emgmak rev-Doe \ 0:;i\ ,‘ ('7 66 V m; 2 szvoriks OQWW (\ 4% so \g) (k, N -— Eomcﬂg P‘\‘= “Eu Ev‘ —. F" ’L k> CL. \5) 6; = [\b .\. Begum + 0339 05\%‘\L5\L°\ W K§=- SVuﬁl“ ‘5‘; = W" (éktx\ ‘5 RD S K Me bkqw‘n mwgwm7 0; ~‘BL “W— ? mp_ §:,LQ L 3. Two point charges q] I i; Bi : E :7 and qz are placed at positions R“ 7 (ml '42) ’ (L1 (0,0,L1) and (xz,y2,L2) 1‘ ‘ ‘ 'r A \ __.__ -8211‘813-‘13 relative to a conducting plane at z=0, as shown in the sketch. a(10 pts) Find the electrostatic potential at a point (x,y,z), z>0. W1” M QSeM‘emM K1 W Wmtk W Xx *%1 M S\’\\i\N\’\ _ ‘\ L. —- a) L '7: * -—::,——- " ff” WW 8‘, _ 83 gm“ ( ,MSW “5,91 \( “mu (Q‘X‘AHL \\ * ‘11 “l‘::/ -— L . H,” \l UP‘LQ'LNUKUB-hIx—VZ: “L25” \{Ga-XzXl-x— M‘s-“XLX‘tLQﬁE b(10 pts) What is the electrostatic energy of this distribution, taken relative to q1,q2 at inﬁnite separation from each other and from the plane? bxjéivk‘m one“ F352,: .QMHQE W ‘ \KA £50 ’m‘kmﬁ 1 L3 “a a8 g’gkm «laws v- iiKGL‘Q U9 * cng‘M l ﬁﬁt‘wg 3 \ -—.- ' I .— 3 L...- 05 W / ~ 3—— 133. + k 32,. + ,1, ‘_ \W\ “\9 (‘6‘ 2- R Cﬁﬁsx DEA-":73 Ub—JL'A HM— EU _ _ g .. exam 06L + 1 L 52L + L“ (1‘5 K” CE?) crew‘s“ ‘k‘ “‘86 m“: \ I " *” cu \ . °9W \ V9. -“;_\\ \‘kz' ,1 ¢\%Q~3* _ CS\% * 7‘. q E L ‘ %\ 1 “Eva "W-A 8K 83 (3-1—3 \$1122. 7-1-1 reg; {a JUL) c(5 pts) What is the net charge on the conducting plane? /~ " 4. A spherical capacitor is constructed from two concentric metal s heres of outer radius a and inner radius b (a<b). There are 2 shells of dielectric in the space between the spheres, with dielectric constant K1 for a<r<c and with dielectric constant K2 for c<r<b. The inner sphere has total ~ charge Q. a(8 pts) Find the (free) charge densities on the spherical conducting surfaces at r=a and ‘ r=b. 6.5 DA = & 6“" 93,) (A 1) hm ‘ V‘D h" (7* “A a. Mm W 3 x M so “’ . m 53;. 0a. —_—. -— Gum m b(8 pts) Find'the surface polarization charge densities on the dielectrics at r=a1 and r=b, "D W «(NL‘O =2 {i N and r=c. qr“ n} ‘ D u= as; weave. = 8.3m: 9 3—.— 0-"sz @ ~ C K) ﬁnite A A " h \ a «v: +n~ 3120‘ m a: "“ \D GWL—Or'ﬁgr ’L '3 m'k .L. ? T“ m (rpm: U “(D “moi [C(Q pts) Find the potential difference between r=a. and r=b. 3 0e: (Luc— EA ® 3x: —R. A So 6'? L33 1: 31.x?”ch *" m’ Eu “:3 g ‘ ‘ \ z a‘mLU-{zv u-‘eﬂ’ w R Kx \$52on "v wan Q ’9 1' ' Q i— -— ’— 9; L *J' W. Kink L O“ c\ “W‘EuKz C“ b x x _. “D A L‘} A \ 'm . " ‘5'” *9 V378 +RREM® “a SQ‘Wﬂw =" 3 LIB “% : g 's~ V ‘3 = 1 F +1 V _*, "E ~ \x in mg, x {:1 3 .Le3 (g. F ‘ "o - '3 =.— _ —-- _. ._L ‘9 ‘3“ “' 4' mewe '69 “8 5 Fe '* masks :5qu “I 57mm?“ a“ «fa—8V9 4' ‘c-tv-t 2. _ __\__'B 1'3 L '3’ -91 7 L ‘1': '3 43m? Axéubétc (LIAN sweée'éq -= mém‘ié 4a V1541 0 EB“ £A0_+B‘i\ ~+ LEW“ me + (kz‘3+§£\%m§o ~‘~.) ‘ +~> wqu ' ' '= LAc-K' Be,th +U’u m +34“) «.6» LG- 80 *' my “r Bag-X mxe~0g~~~ meﬂ ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 6

Sample_Exa-_1994 - Name> PHYSICS 322 Hour Exam March 2...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online