Parallel Prefix with n > p

Parallel Prefix with n > p - 3. Every processor has a...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Title: Parallel Prefix with n > p Date: September 4, 2007 9:36 AM Category: CprE426 Tags: Week 1:   Modeling and Estimation Week 2:   Parallel Prefix operations PP operations must be associative Parallel prefix n >> p n = 16, p = 4 1. Each processor does local parallel prefix p0 s(0, 0) s(1, 1) | “ s(0, 3) s(0, 2) s(0, 3) | p2 s(4, 4) s(4, 5) | “ s(0,3) s(0, 7) s(4, 6) s(4, 7) | p3 s(8, 8) s(8,9) | “  s(0, 3) s(0, 7) s(8, 10) s(8, 11) | s(0, 11) p4 s(12, 12) s(12, 13) | “ s(0, 3) s(0, 7) s(12, 14) s(12, 15) | s(0, 11) s(0, 15) 1. Sum 2. Sum on every processor
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3. Every processor has a partial sum <-- this is the one that is commonly needed ( polynomial evaluation, etc) 4. Every processor has all partial sums p0 a0, | at * x^t, from t = 0 to 3 a0 + a1(x), | a0+a1(x)+a2(x)^2, | a4+t * x^x^t, from t = 0 to 3 a0+a1(x)+a2(x)^2+a3(x)^3 | p1 a4+a5(x)+a6(x)^2+a7(x)^3 | a8+t * x^x^t, from t = 0 to 3 p2 a8+a9(x)+a10(x)^2+a11(x)^3 | p3 a12+a13(x)+a14(x)^2+a15(x)^3 | a8+t * x^x^t, from t = 0 to 3 p(...
View Full Document

Page1 / 2

Parallel Prefix with n > p - 3. Every processor has a...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online