Unformatted text preview: Problem 3 * Given the linear subspace V of R 3 deﬁned by the equation 2 xy + z = 0 V = { ( x,y,z ) ∈ R 3  2 xy + z = 0 } ﬁnd matrices A and B (and corresponding linear transformations T A and T B ) such that 1. Ker( T A ) = V 2. Image( T B ) = V . 1...
View
Full Document
 Spring '05
 CONSANI
 Linear Algebra, Algebra, Vector Space, Ker, linear transformations TA

Click to edit the document details