**Unformatted text preview: **Problem 3 * Given the linear subspace V of R 3 deﬁned by the equation 2 x-y + z = 0 V = { ( x,y,z ) ∈ R 3 | 2 x-y + z = 0 } ﬁnd matrices A and B (and corresponding linear transformations T A and T B ) such that 1. Ker( T A ) = V 2. Image( T B ) = V . 1...

View
Full Document

- Spring '05
- CONSANI
- Linear Algebra, Algebra, Vector Space, Ker, linear transformations TA