100%(6)6 out of 6 people found this document helpful
This preview shows page 1 - 3 out of 9 pages.
Problem Set 8 SolutionsPhysics 253AFall 20181(a) The tree level diagrams for Moller scatteringe-e-→e-e-areiM=e-(p2)e-(p1)e-(p4)e-(p3)-(1)Note the relative sign, since theu-channel graph can be obtained from thet-channel graph by swapping the final statefermions. In Feynman gauge,iM=iMt-iMu(2)= (-ie)2¯u3γμu1-igμν(p1-p3)2¯u4γνu2-(-ie)2¯u3γμu2-igμν(p1-p4)2¯u4γνu1,(3)so thatM=e2(¯u3γμu1) (¯u4γμu2)t-(¯u3γμu2) (¯u4γμu1)u.(4)The complex conjugate ofMisM*=e2(¯u2γμu4) (¯u1γμu3)t-(¯u1γμu4) (¯u2γμu3)u.(5)The matrix element squared is thus|M|2=|Mt|2+|Mu|2- MtM*u- MuM*t(6)=e4(¯u3γμu1) (¯u4γμu2) (¯u2γνu4) (¯u1γνu3)t2+(¯u3γμu2) (¯u4γμu1) (¯u1γνu4) (¯u2γνu3)u2(7)-(¯u3γμu1) (¯u4γμu2) (¯u1γνu4) (¯u2γνu3)t u-(¯u3γμu2) (¯u4γμu1) (¯u2γνu4) (¯u1γνu3)t u.(8)Note that|Mu|2is related to|Mt|2by 1↔2, and thatMuM*tis related toMtM*uby the same transformation.So we need to compute 2 of these 4 terms and can recycle our results for the remaining 2.Next we compute the spin sums using the identity∑s[us(p)]a[¯us(p)]b= (/p+m)ab. Beginning with the 1/t2terms,|Mt|2≡14Xspins|Mt|2=e44t2Xspins(¯u3)a(γμ)ab(u1)b(¯u4)c(γμ)cd(u2)d(¯u2)e(γν)ef(u4)f(¯u1)g(γν)gh(u3)h(9)=e44t2Xspins[(u3)h(¯u3)a(γμ)ab(u1)b(¯u1)g(γν)gh] [(u4)f(¯u4)c(γμ)cd(u2)d(¯u2)e(γν)ef](10)=e44t2[(/p3+m)ha(γμ)ab(/p1+m)bg(γν)gh] [(/p4+m)fc(γμ)cd(/p2+m)de(γν)ef](11)=e44t2Tr [(/p3+m)γμ(/p1+m)γν] Tr [(/p4+m)γμ(/p2+m)γν](12)1
=e44t2hTr (/p3γμ/p1γν) +m2Tr (γμγν)i hTr (/p4γμ/p2γν) +m2Tr (γμγν)i,(13)where, to get to the last line, we used the fact that the trace of an odd number of gamma matrices vanishes. Whileit looks like it took many steps to reach the last line, with some experience one will be skip directly from line (7) toline (12). We can now evaluate these traces using the formulasTr (γμγν) = 4gμν,(14)Tr (γμγνγργσ) = 4 (gμνgρσ-gμρgνσ+gμσgνρ).(15)This leads to|Mt|2=4e4t2(pμ3p1ν-p1·p3δμν+p3νpμ1+ 4m2δμν) (p4μpν2-p2·p4δνμ+pν4p2μ+ 4m2δνμ)(16)=8e4t2(p1·p2)2+ (p1·p4)2-2m2p1·p3+ 2m4(17)=2e4t2(s2+u2+ 8m2t-8m4).(18)To reach the second line above, we used relations likep1·p2=p3·p4which follows from (p1+p2)2= (p3+p4)2. Toget to the last line, we useds= (p1+p2)2= 2m2+ 2p1·p2,(19)t= (p1-p3)2= 2m2-2p1·p3,(20)u= (p1-p4)2= 2m2-2p1·p4.(21)Having computed|Mt|2we can write down|Mu|2by sending 1↔2, or equivalentlyt↔u:|Mu|2=2e4u2(s2+t2+ 8m2u-8m4).(22)Moving on to the next term in|M|2, it follows from equation (8) thatMtM*u≡14XspinsMtM*u=-e44t uTrh(/p3+m)γμ(/p1+m)γν(/p4+m)γμ(/p2+m)γνi(23)=-e44t u