Fall 99 final exam solutions

Linear Algebra with Applications

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1. [6 points] A matrix M is of the form 0 * 5 =1: * :1: =1: * ’ o Where as usual the *’s denote unknown and possibly different real numbers. Given that M is in row—reduced echelon form, find all possible M, and explain why there are no other possibilities. For each Of the M that you have found, determine its rank, image, and kernel. Chen .‘5 “UH-Ll (1“:0: an: 5. M4 _ M [n Vow-wheed; dyovm. A bin“ H“ a“; "U B “A an an“. “~54 Lave-n leaning :L Began 1H“. Hon-LMIQh'IYYJ Hem! an: l- Evvxl 0M m a. column ui‘l’L n £9140": i 1M“; L” 35’5- ku 4122 2 0 ' ’ . 1.? a we," non“ ave J'HuM \ka could Ajqu 'Hv-L SECOWJ WW “W MA km“! 5‘6th 5 H“ 600ka L: lid-[0v Mal 5'? a\2-._"‘LiaL Pr MA Vow*wdfleeo' Icema- fi '9“ * , F “ a1“: 0 . M Mui'l; lot a .‘L so,er w-leat "Rd “Fwd noh'zum l? 0. WW hoH'Z-Mo I I «‘3 woulqt L: we Mace :4 I: I". 14-th Column 23 ' GH¥1‘79£‘HU Stcfinat run. G? a [again-.3 . ' HUM aunt M“ 015* '. Thus Rum-LL“? “ on o a: _ I. W avi- a: f 1‘! ahaolflnj ii 44.4% a‘q q? WaIwfll #111 r; L7 Mi 2 c: Z . MW): 2 .‘MJJMJT-Wfiium 2 {Rain . tau/(114,): SIMEP] [~95]; ' I I 3 ," 3 . w a s was” an, rm kw;st n- 'ILnna~vw~nJoi°“‘L"‘*H= - 'Z"[ I M2: [0:5 1 mums—l Meme.“ 31W“le I 0000 o N am 0 I o 1 . ' I " 0 ' ° 1 ' a“: :i “brat”! Ml- Lc a no»; Iv! Lam: a“ Waikiki-ms.) 2. Consider the matrix n—w—Im r—Irqr—a a i]- a) [4 points] Construct an orthonormal eigenbasis for A. 1‘1 _—| "' 11—A : u; 1—2 -1 — "l -I 3—2 Ask (LI-M: (1-2134 -—l — six—z) = A3“ exact) —~ ti - =l (m-Uhhsxm} _ = (yum—«3 A («as u‘rMVfa-[ws ! (fig-MALI) owl “I (43......H. i). I " l I ‘ =2 luxh-I—AY: m H ' 4 Pre£(l‘I“A\ - [a o o] ) Ea - Sf - I - o o o J, O O I J; 1, ' l 0 -! ' ' _ . w! wz. We? (LI-I'PA) 2 I o l _| y E"[ = “(4.1-” O 0 0 - [I _ " SfaM § 1 i ' - “G. _ TL” ifislwtp’s} "‘ “WM u‘tmlvut} ‘erA’ 3 LIA". A}! up; ou‘uaeuura-QL b) [2 points] .Is A diagonalizable? Why or Why not? _ Yes, SMQ we IMAM WE‘VUJAJ M(0V{'Ldmvm1¢” uTAL-fiu - Le+ S: .9 1’ 17:. . _I_ I m, 3As;['c‘f§] I, 004 3 G, : 2‘ 0 - qtvbwkfifiq'fiter m lfgnomthJ 2- i, 3;» ‘ L5; 133: a}. = —\- [ I ] I [($311 03 1 - «T3? Iii moi 'ohflh‘lfil ' aatha-g'rs «C» A. 4c) [4 points] Using parts (a) and (b), compute A2000. _.!_. ._ \E J: f: o .53.. 1 a: T3 .. 1 o o B:- % A3 -* 0 £ 0 _ a o "l ions 4 ' 9.000 —1' 200° 3. Let:B be the matrix ‘ B = QCCTOLJCF} II a) [3 points] Find all eigénvalues of B. 3—1.1. .051 XI- B 7- —|.3 ’).-o.‘{ HUI—Bl: [Ur-1.2K)— om + (ova-allitk—mm-0.2) + (o-‘l\[1.&,)] I: [mt-ll) +0.H€+0.51][)f—2_). +0.“, 4 I.o‘{~\ 9?— LH + I)(A‘—~.2> +2) .lgz Z - 7. b) [3 points] Does the dynamical system ' _u .: II A —IIIII H" I" m + 1) = 3m) have a point 'of stable equilibrium? Why or why not? “is is a fiscal-c ClYUmwu‘csl 51‘4th . _ ‘ ctull‘lfiv‘la. “femur wl‘m {L4 I MJOLJ“ a; EILE— afirmuqlwr are less Hun- d. . This Is Ito-l q“ cat! Luv-t “CW-{St ; [Anal 2‘ “Ml hull: ‘5 4 c) [4 points] Describe qualitatively the behavior of _this dynamical system if 5:10) is the unit vector OOH Wing] 10¢ lwi'Hu‘ as a Mum. WLMqL,m ‘f- “u dathvnibrs s. L wt m2 5.1m ;+; HM wt ewe Cmer‘Ll “'4 Euro. 00 -0 8m Ii,[=\ m (ALI-sh ‘l‘rajgol'avv "‘C [H M ellt‘PSC . ' 4. Consider the linear transformation T : cw —) 000 given by T0) = f” — 2f’- a.) [6 points] Find e11 real eigenvalues of T and their corresponding eigenspaces. ' L61 ’XelR “475%.” A a, M. e.~.Kaa.al.a (1.. T; m rm: H' 4c... am in a”; ' 3W“ f"—2£' = )1? f"— M“— M3 = 0 ma :5 23am“; +6 43mm: Ha Lanai .0 LL, mar alflécuwkal new!“ '11-?» = cw—a c” (12131? = £"-— ZP’—- H. m! u .I 'T- t“ =- 1“ maL .rln, 19 l ’ HIM . K 2“ m, In, ro-i's 7‘: 2:04; 43 a grin: “use roe-i3- an oiu‘s‘i'ihci' wales: )H'h—l - wLUM “a. Iro.{1: of “a; eLAFtPILi. 0N ans-MC“, M 361...)? + - — i 4 Law [134‘ ‘-" srcw- i EMS“ e 1 +3 g I H: A) ‘4 J Hun “use {10: Luis ‘thn ‘ms an; read} ' ' (“WW MJ u»! (my: Ex: MCI-“'3‘: Tug? “1 I}<"“,Hwn MUSQ thfl} clvmelu: I I (|+:\]—l"3)'e : + a EPA—E)- C J C(l'i\.]“l-A H 2' e{(mm1c n. [mafia-i i) eU-fiEHi' E ml w-c lam E)“:— iwr (T-fl 3? Sf‘w‘iet. cmd'l‘k 4:, b) [2 points] Let T2 be the same linear transformation restricted to the subspace P2 of C°°, consisting of polynomials of degree at most 2. (That is, T2 : P2 -+ P2 is the transformation taking any polynomial f of degree at most 2 to f” — 2]“ Choose a basis for'Pg, and write the matrix A2 of T2 with respect to this basis. Pz has a mach/ml Law's g 1,1311} . I 0 gm = 0 mi manta. Leda». “rib”? “lilffil 2 "Z 0 "Z 7. ' “Wt-x": [a] T253): 2-H“? ' 7- e 0 4‘ l ‘ o O 0 c) points] Find the image and kernel of this matrix A2. Check (part of) your work by explaining the relationship between parts (a) and (c) ' o l -l' D 1 NA”) = O o I = o o o o ' o- o o I WW: ‘F‘MHOR = W?“ t _ _ o T“. rm; [ms Cut» Magus: 5f“ =' steel-1, 2-4; 7: srm {1,53 0 l 0 Am that-m x Lama}: LurCTJ Amt; 45.14;; Lam, LN... drum o, W: linen; Cm. v“! («1" +Lul' '1“, (T) :_ ED .—. 5r“ i e 2e) 6::ch r I ' 3 5!“ la“; 4—? m at; a cam 41mm, Ls e“ 94. P1. 5.‘ r1_‘he following continuous dynamical system models the populations a:(t), y(t) of two species: 25:“: = (“y-1h: 6y _ a - wiry—3):} - We consider only the first quadrant a: 2 0, y 2 0 since we are modelling populations. a) [2 points] Sketch the nullclines of this system, and find any equilibrium points. " ‘ . 12-0 ' b) [4 points] Use linear approximation to find the J acobian J of the system at any equilibrium points from part (a). 39-"? £(xl‘3) : 03*“ x' . it i‘W’ ("u—3): 9’: - 93 - 5-; : (a l -- ‘X 94 = 9 = — 9x L; 5% 31-23 3 9 'I BI a I V n {215% _ Sikh) EEC M x a 9 9 a: -lo 53 5% a.) an GM ‘1 - c) [4 points] Analyze the stability of each equilibrium point by computing the eigenvalues of J. 30)] La: eigenvalue: ' “'i ) ‘3 sfiue H {s Amaimi. Be” on Maui-I've mo‘ rial, s. P f: a r1}n+o£ six“. efihilgbh‘ym (mm: 3 < (Lg)1 , go ) i has thvmiuu 3 ss‘hce H is [aw-Ur Water. 30% m Posi‘l'iw: anal Mai, 51: G. .‘s m“- a fu‘h-i a-c AU: zfiv'ufil-w‘um, } ‘ ' (méelze<(§) o a #- I. as Jam“. 0 - i: 0).: 3‘1“- )‘_'Z' OCR] L {mu : (34.10“) MA Lume- [mu-s uYMthlu-Ls Z )._.l _ I W141; ovu. [Mdkuc-GMJ am M3 We, K h me a raMi «C'si'aue ab. 9 d) [2 points] Sketch (approximately) the phase plane of this system, including behavior near equilibrium points and approximate direction of the flow lines in the regions separatedby the nullclines. 7 10 6. Consider the temperature T(3:,t) of a metal bar extending from a: = 0 to m = 7r._ The temperature satisfies the heat equation a_T 32:" 31::“5585' and the ends are held at a constant temperature of zero, i.e. T(0, t) = O and T(7r,t) = O for all t Z O. a) [3 points] Show that the functions e‘mztsinmm) satisfy the difierential equation and the initial conditions for all positive integers n. 1 - mt . Lgl- Tn(z,tl= e F 'Mnx. 2 “MM 9.1:: __ *flnl. eh/‘aé Jaw-MK _ ¢£ - J4}: : n- e [m m M‘X X 2 z . LE: _“1.eH/uu+.miflx x = .. “w .- .H How“ 25% m); El? — “fun?- 2 [A max "'/un.(---|r\2‘-e/M flown?!) a = _O. ._ 2+ I" .. A‘59’ 8 MM 0 —- O "" “1£ , b —- Ila “GIN Elma: 8’” AM" WW " o 5 ‘9 11 b) [7 points] Suppose now that'the initial temperature of the bar is given by , T(x, 0) = 0(3) = sin3 3:. Determine T(93,t) for all a: E {0,7r] and all times t 2 0. [Hint Use Euler’s formula eiy = cosy + isin'y if you are not sure about the relevant trigonometric identities.] Examine the behavior of T as t —> 00. m 74.31; . Wt Inf“; a “Lei-1'“: dc ‘Hu. fife: Tctxff) :- Z L)“. e . m max . ' “=1 , n g ' m I I mad-val («Adam W“ "‘4' Tbsp) ’3 Z. by. 74".“ “x h:\ ~ 3 TCx,0)_= AMA. " " F; I hi 56 we. 4L Cwei' axPnTSI‘bm .5 "Hut W‘u'ff 9“ M k . we lure gt a £5034 IMP Laval..qum op 4L.“ gucg‘onr fiu‘l (3:510? ‘ 'HM. Mfi‘r‘ai raw-43““. {helm sum“ Max 1} a night and farm u I Is 3‘! . gauge“ 0min:ng Las‘c +flhjafl°wtklsc fianc‘l‘l‘m’l F' 5"“: H El... 3 _ Euiu‘s For-“4*: e?)Ex -= e '13“) = mo 37: +1445“ 37: . . r 3 33"“ = (enjs ':—-" (co-é ‘K + £45.0- 7c) 7 . 2 - = c.ng + 3:. we K WK 2 n '5 --% WK» X“‘£¢u'm 'X -1 "2 (m3x~3mx°w K) . '3 1 . + 1(3mxmxr—‘m Mg'i-oL-Vla “awaken, for“! Yigidci ' 3 2 . - a c K“ K m3K -- 3W7‘m J‘W‘vg '—-» 3(|—-,¢;..‘x Wit—M K ' .3 ‘2‘ sycax-r Lia/WK . i . Tm: Bfier.w3¢5 MAM“ .M'ng = "meé—ngz {2’33me Ham 1 F. w N5 Mmbui- ...
View Full Document

Page1 / 12

Fall 99 final exam solutions - 1. [6 points] A matrix M is...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online