ch08_ism - 8 Natural and Step Responses of RLC Circuits...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
8 Natural and Step Responses of RLC Circuits Assessment Problems AP 8.1 [a] 1 (2 RC ) 2 = 1 LC , therefore C = 500 nF [b] α = 5000 = 1 2 RC , therefore C =1 µ F s 1 , 2 = 5000 ± s 25 × 10 6 (10 3 )(10 6 ) 20 =( 5000 ± j 5000) rad/s [c] 1 LC =20 , 000 , therefore C = 125 nF s 1 , 2 = ± 40 ± q (40) 2 20 2 ² 10 3 , s 1 = 5 . 36 krad/s ,s 2 = 74 . 64 krad/s AP 8.2 i L = 1 50 × 10 3 Z t 0 [ 14 e 5000 x +26 e 20 , 000 x ] dx +30 × 10 3 = 20 ( 14 e 5000 x 5000 ³ ³ ³ ³ t 0 + 26 e 20 , 000 t 20 , 000 ³ ³ ³ ³ t 0 ) × 10 3 = 56 × 10 3 ( e 5000 t 1) 26 × 10 3 ( e 20 , 000 t 1)+30 × 10 3 = [56 e 5000 t 56 26 e 20 , 000 t +26+30] mA = 56 e 5000 t 26 e 20 , 000 t mA ,t 0 AP 8.3 From the given values of R, L, and C, s 1 = 10 krad/s and s 2 = 40 krad/s. [a] v (0 )= v (0 + )=0 , therefore i R (0 + 8–1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8–2 CHAPTER 8. Natural and Step Responses of RLC Circuits [b] i C (0 + )= ( i L (0 + )+ i R (0 + )) = ( 4+0)=4 A [c] C dv c (0 + ) dt = i c (0 + )=4 , therefore dv c (0 + ) dt = 4 C =4 × 10 8 V / s [d] v =[ A 1 e 10 , 000 t + A 2 e 40 , 000 t ] V ,t 0 + v (0 + A 1 + A 2 , dv (0 + ) dt = 10 , 000 A 1 40 , 000 A 2 Therefore A 1 + A 2 =0 , A 1 4 A 2 =40 , 000; A 1 , 000 / 3V [e] A 2 = 40 , 000 / [f] v = [40 , 000 / 3][ e 10 , 000 t e 40 , 000 t ] V 0 AP 8.4 [a] 1 2 RC = 8000 , therefore R =62 . 5Ω [b] i R (0 + 10 V 62 . = 160 mA i C (0 + ( i L (0 + i R (0 + )) = 80 160 = 240 mA = C dv (0 + ) dt Therefore dv (0 + ) dt = 240 m C = 240 kV / s [c] B 1 = v (0 + )=10 V , dv c (0 + ) dt = ω d B 2 αB 1 Therefore 6000 B 2 8000 B 1 = 240 , 000 ,B 2 =( 80 / 3) V [d] i L = ( i R + i C ); i R = v/R ; i C = C dv dt v = e 8000 t [10 cos 6000 t 80 3 sin 6000 t ] V Therefore i R = e 8000 t [160 cos 6000 t 1280 3 sin 6000 t ] mA i C = e 8000 t [ 240 cos 6000 t + 460 3 sin 6000 t ] mA i L =10 e 8000 t [8 cos 6000 t + 82 3 sin 6000 t ] mA 0 AP 8.5 [a] ± 1 2 RC ² 2 = 1 LC = 10 6 4 , therefore 1 2 RC = 500 ,R = 100 Ω [b] 0 . 5 CV 2 0 =12 . 5 × 10 3 , therefore V 0 =50 V [c] 0 . 5 LI 2 0 . 5 × 10 3 ,I 0 = 250 mA
Background image of page 2
Problems 8–3 [d] D 2 = v (0 + )=50 , dv (0 + ) dt = D 1 αD 2 i R (0 + )= 50 100 = 500 mA Therefore i C (0 + (500 + 250) = 750 mA Therefore dv (0 + ) dt = 750 × 10 3 C = 75 , 000 V / s Therefore D 1 αD 2 = 75 , 000; α = 1 2 RC = 500 ,D 1 = 50 , 000 V/s [e] v = [50 e 500 t 50 , 000 te 500 t ] V i R = v R =[0 . 5 e 500 t 500 te 500 t ] A ,t 0 + AP 8.6 [a] i R (0 + V 0 R = 40 500 =0 . 08 A [b] i C (0 + I i R (0 + ) i L (0 + 1 0 . 08 0 . 5= 1 . 58 A [c] di L (0 + ) dt = V o L = 40 0 . 64 =62 . 5 A / s [d] α = 1 2 RC = 1000; 1 LC =1 , 562 , 500; s 1 , 2 = 1000 ± j 750 rad/s [e] i L = i f + B 0 1 e αt cos ω d t + B 0 2 e αt sin ω d t, i f = I = 1 A i L (0 + )=0 . i f + B 0 1 , therefore B 0 1 . 5 A di L (0 + ) dt . αB 0 1 + ω d B 0 2 , therefore B 0 2 = (25 / 12) A Therefore i L ( t 1+ e 1000 t [1 . 5 cos 750 t + (25 / 12) sin 750 t ] A 0 [f] v ( t Ł di L dt =40 e 1000 t [cos 750 t (154 / 3) sin 750 t ] Vt 0 AP 8.7 [a] i (0 + , since there is no source connected to L for t< 0 . [b] v c (0 + v C (0 15 k 15 k +9 k ! (80) = 50 V [c] 50+80 i (0 + )+ L di (0 + ) dt = 100 , di (0 + ) dt =10 , 000 A / s [d] α = 8000; 1 LC = 100 × 10 6 ; s 1 , 2 = 8000 ± j 6000 rad/s [e] i = i f + e αt [ B 0 1 cos ω d t + B 0 2 sin ω d t ]; i f ,i (0 + Therefore B 0 1 ; di (0 + ) dt , 000 = αB 0 1 + ω d B 0 2 Therefore B 0 2 . 67 A ; i . 67 e 8000 t sin 6000 t A 0
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8–4 CHAPTER 8. Natural and Step Responses of RLC Circuits AP 8.8 v c ( t )= v f + e αt [ B 0 1 cos ω d t + B 0 2 sin ω d t ] ,v f = 100 V v c (0 + )=50 V ; dv c (0 + ) dt =0 ; therefore 50 = 100 + B 0 1 B 0 1 = 50 V ;0 = αB 0 1 + ω d B 0 2 Therefore B 0 2 = α ω d B 0 1 = ± 8000 6000 ² ( 50) = 66 . 67 V Therefore v c ( t ) = 100
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 51

ch08_ism - 8 Natural and Step Responses of RLC Circuits...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online