This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Fall 2003 Math 308/501502 3 Mathematical Models 3.4 Newtonian Mechanics Fri, 19/Sep c 2003, Art Belmonte Summary Well use Newtons theory of motion from physics to model linear motion. Our starting point is Newtons second law, F = ma which says that force = mass acceleration. We take into account gravitational force and possibly air resistance. Hand Example Example A A mass of 0 . 2 = 1 5 kg is released from rest. [This means that its initial velocity is zero; i.e., v( ) = 0.] As the object falls, air provides a resistance proportional to the velocity. Specifically, the resistance force is R (v) =  . 1 v =  1 10 v , where velocity is measured in m / s. If the mass is dropped from a height of 50 m, what is its velocity when it hits the ground? Solution Velocity Let x be the distance of the object above the ground, so that the upward direction is positive. There are two forces acting on the object. 1. The gravitational force, mg , is pulling the mass downward. Here g = 9 . 8 m / s 2 . Below well use 9 . 8 = 98 10 = 49 5 (exact rationals). 2. Air resistance acts in the direction opposite to motion. Since the mass is falling downward, air resistance acts upward . Since a downward falling mass has negative velocity, the force of air resistance is 1 10 v , which is positive , as required. Apply Newtons second law to obtain mg 1 10 v = F = ma = m d v dt , whence (recalling m = 1 5 ) d v dt = g 1 10 m v d v dt = 49 5 1 2 v v + 1 2 v = 49 5 This is both a separable and a linear equation, so we may employ any of the techniques from 2 . 2 or 2 . 4 that we prefer. Lets go through the steps of the Conventional Procedure (CP) for linear equations for practice since well actually use the separable techique in the second part of this problem! 1. The DE in SLF is v + 1 2 v =  49 5 . Here p ( t ) = 1 2 , the coefficient of v in the SLF. 2. Construct an integrating factor: ( t ) = exp ( R p ( t ) dt ) or exp ( R 1 2 dt ) = e t / 2 ....
View Full
Document
 Spring '08
 comech
 Math

Click to edit the document details