DifferentiationIntegrationRules

# DifferentiationIntegrationRules - Differentiation Rules...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Differentiation Rules Calculus I General Formulas 1. 2. 3. 4. 5. d dx k Integration Formulas Calculus I General Formulas 1. k dx = kx + C. (u + v) dx = (u - v) dx = u dv = uv - u dx + u dx - v dx. v dx. = 0. + v) = - v) = du dx du dx d dx (u d dx (u + - dv dx . dv dx v. 2. 3. 4. d dx (uv) d u dx ( v ) dv = u dx + v du . dx dv v du -u dx dx v2 v du. (Integration by parts) = . dy dx 5. No "Quotient Rule". = dy du du dx . 6. y = f (u), u = u(x), Basic Functions 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. d n dx u d dx 6. f (u) du = f (u(x))u (x) dx. (Substitution) Basic Formulas 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. un du = 1 u 1 n+1 n+1 u = nun-1 du . dx 1 du u dx . + C; n = -1. ln |u| = du = ln |u| + C. d u dx e d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx = eu du . dx eu du = eu + C. sin u du = - cos u + C. cos u du = sin u + C. sec2 u du = tan u + C. sec u tan u du = sec u + C. csc2 u du = - cot u + C. csc u cot u du = - csc u + C. tan u du = ln | sec u| + C. sec u du = ln | sec u + tan u| + C. sinh u du = cosh u + C. cosh u du = sinh u + C. sech2 u du = tanh u + C. 1 a2 -u2 1 a2 +u2 sin u = cos u du . dx cos u = - sin u du . dx tan u = sec2 u du . dx sec u = sec u tan u du . dx cot u = - csc2 u du . dx csc u = - csc u cot u du . dx ln | sec u| = tan u du . dx ln | sec u + tan u| = sec u du . dx sinh u = cosh u du . dx cosh u = sinh u du . dx tanh u = sech2 u du . dx sin-1 u = tan-1 u = sec-1 u = du 1 . 1-u2 dx 1 du 1+u2 dx . du 1 . u u2 -1 dx du 1 . 1+u2 dx 1 du 1-u2 dx . du = sin-1 1 a u a + C. + C. u a du = tan-1 1 a u a 1 u u2 -a2 1 a2 +u2 1 a2 -u2 du = sec-1 u a + C. sinh-1 u = tanh -1 du = sinh-1 1 a + C. + C. du = tanh-1 u= u a ...
View Full Document

## This note was uploaded on 03/29/2008 for the course MATH 251 taught by Professor Skrypka during the Spring '08 term at Texas A&M.

Ask a homework question - tutors are online