{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 074 - 09:00:00 ← Lower Quartiles = QL • The median of...

This preview shows pages 1–3. Sign up to view the full content.

Statistics 13/09/2007 09:00:00 Measures of Variability Range = Largest value – Smallest value o Advantage: Easy to compute o Disadvantage: Only use two values WB7-1 o Sample A: Range = 510 – 485 = 25 o Sample B: Range = 1000 – 0 = 1000 Variance = “Average” squared deviation from the mean (7.2) sample variance = s squared Example WB7-1 Variance of Sample A: 112.5 Variance of Sample B: 205,000 (computations not shown) The numbers in both samples represent credit card balances in dollars Variances are measured in square units Sample Variance Formula #1 X Deviation (x-x) Squared Deviation 0 0 – 10 = -10 (-10)squared = 100 10 10 – 10 = 0 (0)squared = 0 20 20 – 10 = 10  (10) squared = 100 30 0 200 Sample Variance Formula #2 X Xsquared 0 0 squared = 0 10 10 squared = 100 20 20 squared = 400  30 500

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Quartiles
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 13/09/2007 09:00:00 ← Lower Quartiles = QL • The median of Minimum and the Median ← ← Upper Quartile = QU • The median of Median and the Maximum ← ← Computing QL and QU • Rank data in order from smallest (1) to largest (n) • Find overall median • QL = median of values ranked below the overall median • QU = median of values ranked above the overall median ← ← Five-Number Summary: n even • Ordered data: 1 2 3 4 5 6 • Overall Median: (3+4)/2 = 3.5 • QL = 2 / QU = 5 • Five number summary: 1 , 2 , 3.5 , 5 , 6 ← ← Five-Number Summary: n odd • Ordered data: 1 2 3 4 5 6 7 • Overall Median: 4 • QL = 2 / QU = 6 • Five number summary: 1 , 2 , 4 , 6 , 7 13/09/2007 09:00:00 ←...
View Full Document

{[ snackBarMessage ]}